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Preface 

With the rapid spread of coronavirus disease 2019 (COVID-19) and in the absence of 
evidence-informed guidance, state and local policymakers have put policies in place quickly and 
with little evidence to support their choices or little consideration of the potentially serious trade-
offs. There is an urgent need for a comprehensive and systematic assessment of potential public 
health interventions to address COVID-19. In this document, we describe the interdisciplinary 
and multisectoral approach used to develop a tool to fill that need. The tool provides the 
information and context that policymakers need now to understand the effects of interventions, 
weigh the trade-offs between them, and decide when and how these interventions can be relaxed.  

The tool should be of interest to policymakers and others who wish to use it to understand the 
potential impacts of various nonpharmaceutical interventions (e.g., school closures, stay-at-home 
orders) on health and economic outcomes in their communities. This document detailing the 
methods that underly the tool will be of interest to policymakers or staff members and 
researchers who wish to better understand and assess the structure and assumptions of the models 
and analyses that make up the tool. 

This research was jointly conducted by the Community Health Environmental Policy 
Program in RAND Social and Economic Well-Being and the Access and Delivery Program in 
RAND Health Care. 

RAND Social and Economic Well-Being 

RAND Social and Economic Well-Being is a division of the RAND Corporation that seeks 
to actively improve the health and social and economic well-being of populations and 
communities throughout the world. The Community Health and Environmental Policy 
Program focuses on such topics as infrastructure, science and technology, community design, 
community health promotion, migration and population dynamics, transportation, energy, and 
climate and the environment, as well as other policy concerns that are influenced by the 
natural and built environment, technology, and community organizations and institutions that 
affect well-being. For more information, email chep@rand.org. 

RAND Health Care 
RAND Health Care, a division of the RAND Corporation, promotes healthier societies by 

improving health care systems in the United States and other countries. We do this by providing 
health care decisionmakers, practitioners, and consumers with actionable, rigorous, objective 
evidence to support their most complex decisions. For more information, see 
www.rand.org/health-care, or contact RAND_Health-Care@rand.org. 

mailto:chep@rand.org
http://www.rand.org/health-care
mailto:RAND_Health-Care@rand.org
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1. Introduction

Facing the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, national, 
state, and local leaders have taken unprecedented measures to protect their communities. To 
mitigate the spread of the virus and prevent critical health care systems from being 
overwhelmed, policymakers have implemented a variety of public health interventions, including 
closing schools and nonessential businesses, prohibiting large gatherings, quarantining the most 
vulnerable, and placing all residents under stay-at-home orders. 

These interventions will have wide-ranging effects on the health, economy, and social well-
being of populations. But, by necessity, decisions are being made quickly and often with limited 
evidence-based guidance on their likely effects.  

In the coming weeks and months, decisionmakers will again face tough decisions: how and 
when to relax mitigation measures and whether to reinstate those measures to combat a 
resurgence of the virus. 

Objective of the COVID-19 Decision Support Tool 

The objective of this tool is to provide a decision support framework for state and local 
policymakers to inform decisions regarding COVID-19 interventions. The framework draws on 
evidence from past disease outbreaks, peer-reviewed literature, and data from the current 
pandemic. We have modeled and assessed the impact of a variety of nonpharmaceutical 
interventions (NPIs) on health and economic outcomes, along with other important policy 
considerations, such as the cost and ease of implementing interventions. This tool can inform 
decisions about which NPIs to implement, when to implement them, and when they can be 
relaxed. 

Focus on Nonpharmaceutical Interventions 

The tool focuses on the use of NPIs because they are the primary interventions available in 
the early phase of a pandemic. Because the virus is novel, no established immunity exists to 
prevent it from spreading rapidly. A vaccine could provide immunity to the virus but is expected 
to take at least a year to develop. At the same time, medical treatment of the disease is limited by 
both a lack of information on the effectiveness of available treatments and the need for newly 
developed drugs to go through clinical trials. The goal of NPIs is therefore to delay and reduce 
the peak number of cases per day or, in other words, “flatten the curve” to reduce pressure on 
health services and allow time for clinical trial completion and vaccine distribution (Aledort et 
al., 2007). 
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Best Uses of the Tool 

The tool combines information from an epidemiological model, an economic model, and a 
qualitative policy analysis to assess the effects of NPIs. The epidemiological model is a 
population model, also known as a compartmental model or stock-and-flow model. This type of 
model divides the population into compartments that represent people at different clinical stages: 
susceptible (pre-infection), exposed, infected, and recovered. Data from prior disease outbreaks 
are combined with emerging data on COVID-19 to generate parameters that capture the flow of 
disease transmission. Because of its speed and flexibility, this type of model is well suited for 
quickly providing an understanding of the dynamics of disease spread (Manheim et al., 2016). It 
is also particularly useful for comparing the relative efficacy of different social-distancing 
interventions in reducing contagion (Manheim et al., 2016).  

The economic model is a simplified model of each state’s economy that incorporates the 
relationships across industries, households, and government. We modified an existing model to 
quickly estimate NPI effects by adjusting industry definitions to match those most likely to be 
influenced by social distancing. Our approach has been to restrict output in certain sectors 
consistent with industry estimates or previous literature regarding NPI impacts. We then allow 
these restrictions to flow through the economy and affect other sectors and households to 
produce an estimate of the total economic impact in terms of lost income to households. The 
model is calibrated using readily accessible data and is intended to provide order-of-magnitude 
estimates of the economic consequences associated with various social-distancing interventions.  

The qualitative assessment of NPIs is based on a standard policy analysis approach that 
compares policy alternatives across a set of decision criteria. The assessments are based on a 
review of the scientific and popular literature from past pandemics and the current pandemic. 
This type of analysis provides a systematic way to compare the costs, benefits, and trade-offs of 
different interventions. 

Drawing from the quantitative and qualitative analyses, the tool provides practical 
information for policymakers who are deciding how best to combat COVID-19 and on how and 
when to relax social-distancing NPIs once the disease is under control. This model is not 
intended to accurately forecast case counts, deaths, or economic losses, but is intended to 
illustrate the relative benefits and costs of pursuing different strategies as one part of a 
multidimensional decisionmaking process. 

Unique Contribution of This Tool 

Our interdisciplinary and mixed-methods approach combining quantitative modeling and 
qualitative assessment provides a more-comprehensive package of information than any 
individual model regarding what policymakers need to know now to understand the various 
effects of NPIs, weigh the trade-offs between them, and decide when and how they can be 
relaxed. We are not aware of any other tool that compiles this type of information to support a 
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systematic assessment. The data inputs are updated daily to ensure that the model results provide 
policymakers with the most-recent and relevant information. In addition, we model the impact of 
social-distancing interventions in a more-sophisticated way than the other COVID-specific 
models we have seen. In the epidemiological model, our method accounts for differences in the 
patterns of interaction in different contexts (e.g., home, work, commercial), and in the economic 
model, our method accounts for differences in impact across different sectors of the economy 
(e.g., restaurants, hospitality, air travel). 
  



4 

2. Methods Used to Build the Tool

We used a mixed-methods approach to develop the decision support tool to inform the 
selection and use of a variety of NPIs. We combined quantitative modeling of the health and 
economic impacts with qualitative assessments of other important considerations, such as cost 
and ease of implementation, equity, and social well-being. In this section, we outline the 
components of the tool and how they are connected. We also describe how the NPIs that are 
considered in the tool were selected. In the subsequent sections, we provide detailed descriptions 
of how each component of the tool was developed. 

Components of the Tool 

The tool is intended to provide a systematic assessment of NPIs to inform decisionmaking at 
the state and local levels. To do this, we built an epidemiological model to project the health 
impacts (e.g., cases, hospitalizations, intensive care unit [ICU] utilization, and deaths) and an 
economic model to project the impact on the economy (e.g., loss in gross state income [GSI]). 
The models are connected through a common set of NPI portfolios, representing different 
combinations of NPIs (e.g., schools, bars, and restaurants closed and large events banned). In 
addition, a qualitative assessment of a broader variety of individual NPIs (e.g., travel bans, 
wearing masks), including those in the portfolios, is provided in the tool, and the NPIs are 
evaluated on an expanded set of criteria (see the Qualitative Assessment section). Figure 2.1 
illustrates the components of the tool and how they fit together. 
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Figure 2.1. Components of the Decision Support Tool 

Selection of Nonpharmaceutical Interventions for Inclusion in the Modeling 
Component of the Tool 
The first step in developing the decision support tool was to identify a set of NPIs to be 

included and assessed in the modeling component of the tool. The NPIs serve as the primary 
connection between the epidemiological and economic models. 

NPIs documented in the pandemic preparedness literature include interventions for disease 
isolation (e.g., screening, testing, case tracing, travel restrictions), individual and public hygiene 
behavioral changes (e.g., wearing masks, disinfections), and various social-distancing policies 
(e.g., school closure, large gathering bans, mandatory quarantine). For the modeling component, 
we chose to focus first on the mandatory social-distancing interventions because they do not 
require additional technology or labor support and can quickly reduce the level of contact and 
disease transmission. These interventions were used widely in the first wave of the COVID-19 
pandemic in the United States when widespread community transmission was discovered and the 
United States’ testing capability was catching up. All of these NPIs are included in the Centers 
for Disease Control and Prevention’s (CDC’s) guidance for community mitigation efforts and are 
recommended when the spread of disease within the community is substantial (CDC, 2020a). 
The definitions for the selected social-distancing NPIs are presented in Table 2.1. 
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Table 2.1. Social-Distancing Nonpharmaceutical Interventions 

NPIs Definition 

School closures Closure of schools—public and private colleges; public, charter, and 

private K–12 schools 

Bars and restaurants closures Closure of bars, nightclubs, and wineries; closure of dine-in services, 

only allowing online ordering and take-away services 

Large event bans Banning social gatherings that involve close contacts among people; in 

the United States, the implementation of bans on large gatherings can 

be divided into the following categories: all gatherings prohibited, more 

than ten people gathering prohibited, 50 or more people prohibited, 

other, no action. 

Nonessential business closures Temporarily cease all nonessential business activities 

Shelter-in-place order for high-risk 

population 

High-risk populations advised to stay home unless it is absolutely 

necessary to go out; during the 2020 COVID-19 pandemic, the 

vulnerable populations are defined as 

• people aged 65 years and older

• people who live in nursing homes or long-term care facilities

• people with chronic lung disease or moderate to severe asthma

• people who have serious heart conditions, are

immunocompromised, or who have severe obesity, diabetes,

chronic kidney disease undergoing dialysis, and liver disease

Shelter-in-place order for all people Remain at home and away from other people unless it is absolutely 

necessary to go out. 

The literature generally indicates that NPIs are most effective when they are initiated early, 
conducted comprehensively, sustained for a longer period, and are implemented in combination 
with other interventions (Markel et al., 2007). Their efficacy also is influenced by the 
contagiousness (typically captured by R0) and the virulence (case fatality) of the pathogen, the 
principal mode of transmissions, attack rate in different groups, proportion of asymptomatic 
infections, and compliance among the targeted populations (Flaxman et al., 2020). NPIs do not 
provide long-lasting immunity and many are labor intensive, politically controversial, and can 
cause social and economic disruptions and ethical concerns (Institute of Medicine Forum on 
Microbial Threats, 2007). Therefore, a timely and comprehensive assessment of the positive and 
negative impacts of different combinations of NPIs on the pandemic and the economy is critical 
for policymakers to make appropriate decisions.  

Using data on the policy response to COVID-19 in the United States (Kaiser Family 
Foundation, 2020), we identified five common combinations of interventions, which we call NPI 
portfolios. Many states have already implemented all of the social-distancing NPIs identified in 
Table 2.1. To provide information about the potential impacts of removing some of the social-
distancing requirements, we create a portfolio (Level 5 in Table 2.2) that includes all of the NPIs 
and four portfolios that sequentially remove NPIs, assuming that the most-restrictive policies 
will be lifted first. The five NPI portfolios, ordered based on their level of control and expected 
impact on the economy, are presented in Table 2.2. 
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Table 2.2. Nonpharmaceutical Intervention Portfolios 

Portfolio Description 

Level 1: Close schools All schools are closed. 

Level 2: Close schools, bars, and restaurants; and ban 

large events 

In addition to school closures, all bars’ and restaurants’ 

dine-in services are closed, only allowing for take-out 

options. Also, large gatherings are banned. 

Level 3: Close schools, bars, and restaurants; ban large 

events; and close nonessential businesses 

In addition to school, bar, and restaurant closures, all 

nonessential businesses are closed. 

Level 4: Close schools, bars, and restaurants; ban large 

events; close nonessential businesses; and issue a 

shelter-in-place order for the most vulnerable 

In addition to the closure of all nonessential businesses, 

a shelter-in-place order is recommended for the 

vulnerable population, including the elderly, children, and 

other at-risk populations. 

Level 5: Close schools, bars, and restaurants; ban large 

events; close nonessential businesses; and issue a 

shelter-in-place order for everyone but essential workers 

In addition to the interventions above, a shelter-in-place 

order is issued for the everyone but essential workers. 

Location and Duration of Nonpharmaceutical Interventions 

When a user opens the tool, they will be asked to select which state they are interested in. 
The tool then indicates the NPI portfolio that is the closest match for what is currently 
implemented in that state. Users can then select an alternative NPI portfolio for comparison. The 
user also can choose from a set of prespecified dates (e.g., May 15, June 1, June 15, July 1) when 
the selected NPI portfolio is implemented. The details of how each of the intervention portfolios 
are modeled are provided in the sections on the epidemiological model and the economic model.  



  8 

3. Epidemiological Model 

The epidemiological model takes into account the impact of the various public health 
interventions on the pandemic over time in U.S. states. The selected NPI portfolios feed into this 
task, providing information about COVID-19, the interventions to be modeled, and estimates of 
their effectiveness. The model provides output that, along with a qualitative assessment of 
interventions, will help policymakers select interventions, choose when to implement them, and 
decide when they can be relaxed. 

Model Approach 

Our model employs system dynamics, which is an approach to understanding the nonlinear 
behavior of complex systems over time using stocks, flows, internal feedback loops, and time 
delays. In models of health systems, such models often are referred to as compartmental models 
because they consider various compartments to represent the population size of different 
demographic, socioeconomic, and health states and consider flows to represent transitions and 
progression between different states. These models provide a framework in which numbers of 
people in different compartments (each one homogeneous with respect to some specified 
characteristic) and the relationships between such compartments, which model the dynamics of 
the population, can be described in mathematical terms. Modeling a diverse population requires 
that the population be subdivided into groups with common characteristics that are relevant to 
the infection under consideration. These subdivisions of the population are called compartments. 
Compartmental models are commonly used to describe the progress of an epidemic in a large 
population comprising many individuals. One common example is the deterministic population-
level Susceptible-Exposed-Infected-Recovered (SEIR) model of disease transmission. Our 
approach builds on a SEIR model but also considers additional infectious states to better describe 
COVID-19. Figure 3.1 displays a detailed view of our compartmental model, whereby 
individuals in our population progress over the different stages of the infection.  
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Figure 3.1. Disease Model Diagram 

State Variables 

Individuals in our population are divided into 12 key compartments: The noninfected and 
susceptible (!), the exposed and infected but not yet infectious ("), the presymptomatic or 
primary infectious stage (#), the infected with mild symptoms ($!"), the infected with severe 
symptoms ($!#), the diagnosed infected with mild symptoms (%!"), the diagnosed infected with 
severe symptoms (%!#), the hospitalized (&), the infected asymptomatic ($$), the diagnosed 
infected asymptomatic (%$), the recovered ('), and those that died ((). We assume that 
individuals in the # and $$ compartments are completely asymptomatic and thus are unaware of 
being infectious. The arrows connecting the disease states describe the progression rates between 
the different compartments. We assume that mild symptoms are a dry cough and a fever, while 
severe symptoms also include shortness of breath. The sum of the population in all of the states 
gives the total population ). However, we assume that ) = 1,	and thus each state variable gives 
the proportion of the population belonging to that state.  

We also model different population strata within each compartment. There are ten total 
strata, composed of five age groups split by chronic conditions or healthy status. For each age 
group, we consider differences in population size, social mixing, asymptomatic rate, and case 
fatality rate (CFR). 

Hospitalization and Intensive Care Unit 

In response to feedback, we are modeling the hospital at a more-granular level and have split 
the hospital compartment (&) into two subcompartments. One compartment, &%&', represents the 
ICU; the other, &, represents the rest of the hospital. In the model, the ICU and the hospital can 
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reach capacity, at which point they take no more patients until they have free beds. Accessibility 
to the hospital and ICU are denoted by the indicator variables . and .%&'. However, because of 
the unreliability of current hospitalization data, we do not yet use these variables. These indicator 
variables are always set to one and the hospital and ICU always remain accessible. In the future, 
we hope that more-reliable data will enable us to introduce these parameters.  

In our model, most of those who develop severe symptoms get hospitalized. The percentage 
of severe cases hospitalized remains constant as long as the hospital has not reached its capacity 
in terms of available beds. Those that are hospitalized can transition into the ICU. This transition 
is not shown in Figure 3.1; instead, we show it separately in Figure 3.2. We assume that, 
provided there is ICU accessibility, all patients who develop critical symptoms (and therefore 
require a ventilator) will transition to the ICU. Those in the & compartment are currently 
hospitalized but are not in the ICU. Patients that are currently in the ICU belong to the &%&' 
compartment. 

We assume that patients who recover in the ICU move immediately to the recovered 
compartment rather than back to the hospital. This is to ensure that individuals do not make 
multiple trips to the ICU. The time spent in the &%&' compartment therefore represents both the 
ICU and the time spent recovering after intensive care in the hospital. 

When the ICU is closed, we assume that all those who required ICU access will die until the 
ICU is reopened. When the hospital is closed, we assume that a higher proportion of severe cases 
become critical and that all critical cases will die. 

Figure 3.2. Hospital and Intensive Care Unit Model Diagram 

 
 

A summary of state variables is given in Table 3.1. 
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Table 3.1. Model State Variables 

State Variable Name Symbol Description 

Susceptible ! No immunity (not recovered) and no exposure 

Exposed " Exposed to infection and in incubation phase, 

noninfectious and no symptoms 

Primary infectious # Infectious with no symptoms, exposed to infection 

and in incubation phase 

Secondary infectious: mild symptoms, no positive test $!" Infectious and mildly symptomatic (dry cough and 

fever), untested or false negative test 

Secondary infectious: severe symptoms, no positive 

test 

$!# Infectious and severely symptomatic (trouble 

breathing), untested or false negative test 

Secondary infectious: mild symptoms, positive test %!" Infectious and mildly symptomatic (dry cough and 

fever), tested positive 

Secondary infectious: severe symptoms, positive test %!# Infectious and severely symptomatic (trouble 

breathing), tested positive 

Secondary infectious: hospitalized & Infectious and severely symptomatic, hospitalized 

and not in the ICU 

Secondary infectious: hospitalized in the ICU &$%&  Infectious and critically symptomatic, hospitalized and 

in the ICU 

Secondary infectious: asymptomatic, no positive test $' Infectious but with no symptoms, untested or false 

negative test 

Secondary infectious: asymptomatic, positive test %' Infectious but with no symptoms, tested positive 

Recovered ' Assumed immune 

Expired ( Died in hospital or disease advanced to critical before 

hospitalization 

Data Inputs 
Table 3.2 provides an overview of the key data inputs and their sources. We then describe 

each data input in greater detail. 
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Table 3.2. Data Inputs 

Data Details Source 

State population, by age Five-year age groups were 

combined to create model strata 

U.S. Census Bureau, 2020 

State chronic population, by 

age 

Chronic condition tables were 

combined with state population 

census age groups to calculate the 

size of the chronic population for 

each age group 

Heron, 2019; 

Agency for Healthcare Research 

and Quality, undated. 

State hospital capacity State-level availability of beds and 

projected possible beds 

Harvard Global Health Institute, 

2020 

State testing, deaths, and 

hospitalization time series 

Daily flows and stocks of positive 

tests, negative tests, 

hospitalizations, and deaths for 

each state 

COIVD Tracking Project, undated 

Nonpharmaceutical 

intervention time series 

Daily time series inferred from 

dates on sheet. Daily NPI bundle 

calculated based on active 

interventions. 

Raifman et al., 2020; Kaiser Family 

Foundation, 2020 

Mixing matrices  Matrices are averaged from the 

two sources. 

Prem, Cook, and Jit, 2017; Marathe, 

2014 

Effect of NPIs on mixing Estimated by the RAND 

Corporation team and informed by 

Google mobility data 

Google, undated 

State Population, by Age and Chronic Status 

For state populations, we use the 2018 figures from the U.S. Census Bureau, which give the 
population in five-year age bands by state and sex. To calculate the proportion of each age band 
with chronic conditions, we use chronic condition life tables, which give the probability of 
having a chronic condition by age and sex. These chronic life tables were created by using 
mortality statistics to split Medical Expenditure Panel Survey (MEPS) data on health status into 
chronic and acute conditions by age and gender (Agency for Healthcare Research and Quality, 
undated). 

We assume that each five-year age group is represented by a midpoint rounded down to the 
nearest integer (e.g., the 55–59 age group is assumed to be 57). The chronic and healthy 
populations are then calculated for each age group by gender and state. These quantities are 
summed so that they match our population strata. For instance, the “age 55–64, chronic 
conditions” strata is the sum of 

• women with chronic conditions ages 55–59
• women with chronic conditions ages 60–64
• men with chronic conditions ages 55–59
• men with chronic conditions ages 60–64.
This information provides the populations of the ten population strata for each state. 
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State Hospital Capacity 

Hospital capacity estimates are taken directly from the Harvard Global Health Institute, 2020, 
estimates. 

Case Counts, Testing, Hospitalizations, and Deaths 

State-level data for case counts, positive tests, negative tests, hospitalizations, and deaths 
come from the COVID Tracking Project, an effort led by journalists and staffed by volunteers 
that publishes high-quality U.S. COVID data (COVID Tracking Project, undated). This 
information comes from state and district public health authorities, news reporting, and press 
conferences. (For a full list of their sources, see COVID Tracking Project, 2020.)  

We use the COVID Tracking Project API to pull flows (the number of new daily 
occurrences) for positive tests, negative tests, deaths, and hospitalizations. We also pull estimates 
for stocks (the number of people with a status) for those currently hospitalized in each state to 
estimate how much bed capacity is used. 

Because the data are aggregated from many sources and because some states are inconsistent 
in their reporting methods, there are likely to be some errors and inaccuracies. However, this data 
set is widely used by reputable institutions, including Johns Hopkins University, The Atlantic, 
New York Times, and CNN. 

Nonpharmaceutical Intervention Time Series 

The dates on which different NPIs were implemented are tracked by a group at Boston 
University (Raifman et al., 2020). We extract the dates for the interventions we are interested in 
and transform from a wide to a long format. We check these data against information from the 
Kaiser Family Foundation and update them if states have begun to reopen (Kaiser Family 
Foundation, 2020). To decide which NPI bundle applies, we look at the combination of policies 
applied, usually using the most stringent policy applied as the current level. This shows one of 
the limitations of our method: Because we track only five different NPI bundles, we do not have 
a way to accurately classify all combinations. Fortunately, most states have proceeded to 
implement NPIs in an order that is consistent with our chosen bundles. 

Mixing Matrices 

We model mixing in the population using mixing matrices. A mixing matrix describes the 
amount of contact that occurs between each of the population strata. We assume that mixing 
behaviors vary by context. For instance, in school, there is a great deal of mixing between 
children, whereas in the home, there is more mixing across generations. We consider six 
different mixing locations: household, work, school, commercial, recreational, and other. The 
mixing matrix that describes all mixing is a weighted sum of the mixing matrices for these 
different contexts. We use two sources for mixing matrices in the baseline scenario. 
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First, we use available data provided by the Network Dynamics and Simulation Science 
Laboratory (NDSSL) at Virginia Polytechnic Institute and State University that represent a 
synthetic population of the city of Portland, Oregon (Marathe, 2014). The NDSSL data for 
Portland, Oregon, provide an instance of a time-varying social contact network for a normative 
workday, derived from daily activities. The data were created from an urban transportation 
agent-based model, which simulated the daily movements of individuals across locations in 
Portland, Oregon. From these data, an edge list connecting nodes or vertices representing 
individuals was constructed (Blum, 2015). The edge weights represent the duration of a typical 
day where individuals interact with each other. The original data set contains 1.6 million 
individuals, 630,000 households, and an edge list that represents almost 20 million face-to-face 
daily contacts across various types of activities and locations. This synthetic data set also 
contains information on age, gender, and health status. 

The second data source is based on self-reported survey data. Over the course of one day in 
eight European countries, 7,290 participants reported 97,074 unique contacts. These self-reports 
listed the age, sex, and location of the contact (Mossong et al., 2008). Mixing matrices were 
created by age group across household, work, school, and other contexts. Another paper 
extrapolated these results to create mixing matrices for 152 countries, including the United States 
(Prem, Cook, and Jit, 2017). We use the U.S. matrix as our second data source. 

These sources represent two very different methodologies for quantifying social mixing 
matrices, and both have drawbacks. The NDSSL data define a contact as two simulated 
individuals inhabiting the same sublocation at the same time. This method likely over-weights 
locations where there are many individuals in low mixing environments, such as workplaces. 
Furthermore, the data are synthetic and represent only Portland on a usual workday, and so might 
not be indicative of the entire United States averaged across all days. 

The Prem mixing matrices define a contact as physical contact, or a two-way, in-person 
conversation with at least three words exchanged (Prem, Cook, and Jit, 2017). Because these 
contacts are self-tracked, they are likely underreported and might over-weight contacts in close 
environments that are more easily remembered, such as the home. Although they are ostensibly 
representative of the United States, the original data were for European countries. 

The mixing matrices produced by these methods are quite different. As a compromise, we 
averaged the two mixing matrices for each mode. Averaging required the following additional 
assumptions: 

• The Prem, Cook, and Jit, 2017, data did not contain separate mixing matrices for
commercial, recreational, and other mixing; all were captured by a single matrix. To
define these matrices, we assumed that the mixing matrices were the same and that
the weights between the matrices were split in the same ratio as in the NDSSL data.

• The Prem, Cook, and Jit, 2017, data did not contain separate data for those with
chronic conditions. We assumed that, within an age group, those with chronic
conditions had the same mixing behavior as those who were healthy. To determine
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weights of the chronic relative to the healthy contacts, we used the same proportions 
as in the NDSSL data. 

• We averaged both the mixing matrices and the relative weights for the mixing 
matrices. 

The resultant averaged mixing matrices for each location allow us to calculate the level of 
social mixing for each state between every population strata. 

Effect of Nonpharmaceutical Interventions on Mixing 

We model the effect of different social-distancing interventions as changes in the weights of 
mixing matrices. For instance, school closures would reduce the weight on the school mixing 
matrix to zero. More detail is given on mixing matrix weights in “Mixing Matrices and 
Interventions” later in this section. We could not find peer-reviewed sources for how 
interventions would change the weights of the mixing matrices. To estimate these values, we 
sought the opinions of the team, especially within the epidemiological modeling and assessment 
group subteams. After several iterations, we reached a consensus on a set of weights for each of 
the NPI bundles chosen. This involved rotating estimates between teams for revision until no 
further changes were suggested. To inform these estimates, we used Google Mobility Reports, 
which show how the amount of time spent in different contexts has changed over time. At the 
time of writing, Google has begun to release more-detailed mobility time series, so these could 
be used to improve our estimates in future iterations (Google, undated).  

Parameter Sources 

Parameters indicate how people move between states in the model. Our parameters are 
discussed as disease progression rates and proportional flows. Proportional flows indicate the 
proportion of people that move into states where there are more than one next step; for example, 
from the incubation phase to the symptomatic or asymptomatic phase. 

Parameter estimates were selected from a review of the literature and with the input of 
RAND experts. To carry out sensitivity analyses of the parameters and to calibrate the model, we 
constructed a large set of independent case runs, each with a different and unique combination of 
model parameter values. Parameter values for the case runs are sampled using a Latin-Hypercube 
approach (Helton and Iman, 1983; Hoare, Regan, and Wilson, 2008). We use either a uniform or 
a beta-PERT (Program Evaluation and Review Technique) distribution to sample the model 
parameter value, as specified within a sensitivity analysis range (Cottrell, 1999). In the latter 
case, the reference value is used to specify the mode of the beta distribution used for our 
parameter value sampling. Summaries of parameter estimates, sources, and sensitivity are shown 
in Table 3.3 and Table 3.4.  
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Table 3.3. Disease Progression Rate Parameter Estimates 

Parameter 
Sample 

Distribution 
Reference 

Value 
Sensitivity 

Range Sources 

Noninfectious incubation phase length PERT 3 2.2–8.4 Backer, Klinkenberg, 

and Wallinga, 2020;  

Li, Guan, et al., 2020 

Infectious incubation phase length PERT 2 1.6–5.6 Backer, Klinkenberg, 

and Wallinga, 2020;  

Li, Guan, et al., 2020 

Severe symptom onset to hospitalization Uniform 2.5 1.5–3.5 Wang, Hu, et al., 2020 

Hospital stay length (includes patients who are 

admitted to the ICU) 

Uniform 8 3–16 Wang, Tang, and Wei, 

2020; Pan et al., 2020 

ICU stay length  Uniform 4 2.5–9 Moghadas et al., 2020 

Severe symptom onset to death for those not 

hospitalized 

Uniform 6 4–10 Expert judgment 

Mild symptomatic phase length (might lead to 

severe disease or recovery) 

PERT 6 4–10 Wang, Hu, et al., 2020; 

Wang, Tang, and Wei, 

2020 

Asymptomatic phase length PERT 9 7–12 Expert judgment 

NOTE: All values are in days. 

Disease Progression Rates 

Incubation Phase 

The incubation phase is the time from exposure to the virus to the appearance of the first 
symptoms. We assumed that the duration of the noninfectious incubation period accounts for 60 
percent of the incubation period (i.e., stage "), and 40 percent accounts for the infectious 
primary stage #. We estimate that the noninfectious incubation phase length is three days (range: 
2.2–8.4 days) and that the infectious incubation phase length is two days (range: 1.6–5.6 days). 
The mean incubation phase length was estimated to be five days. The upper limit might be 
conservative (Backer, Klinkenberg, and Wallinga, 2020). Another study found that the mean 
incubation period was 5.2 days (95-percent confidence interval of 4.1, 7.0), with the 95th 
percentile of the distribution at 12.5 days (Li, Guan, et al., 2020). Backer, Klinkenberg, and 
Wallinga, 2020, found that the median incubation period for COVID-19 is just more than five 
days and that 97.5 percent of people who develop symptoms will do so within 11.5 days of 
infection. 

Symptomatic Phases 

The first symptoms commonly observed are likely to be a dry cough and a fever, although 
other initial symptoms are possible. Wang, Hu, et al., 2020, found that the median time from first 
symptoms to dyspnea (difficulty breathing) was 5.0 days. Wang, Tang, and Wei, 2020, found 
that the median time from first symptom to death was 14 days (range: 6–41 days) and tended to 
be shorter among people aged 70 years or older with a median of 11.5 days (range: 6–19 days). 
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Those younger than 70 had a median of 20 days (range: 10–41 days) from first symptom to 
death. We assume a mean mild symptomatic phase length of six days. This phase length is a 
weighted mean of the time to develop severe symptoms and the time to recovery for those with a 
mild disease, which we assume is similar to time to recovery for asymptomatic disease. In our 
model, we did not consider age heterogeneity here because we considered it in the probability of 
developing severe symptoms, and we want to avoid the potential issue of double counting an 
effect. 

Critical Phase and Hospitalization 

Pan et al., 2020, found that patients recovering from COVID-19 pneumonia (without severe 
respiratory distress during the disease course) and lung abnormalities on chest computed 
tomography (CT) scans showed the greatest severity approximately ten days after the initial 
onset of symptoms. Wang, Hu, et al., 2020, found that the median time from first symptoms to 
hospital admission was 7.0 days, and the time to acute respiratory distress syndrome (ARDS) 
was 8.0 days. This means that time from severe symptoms to ARDS and/or hospitalization is 
between two and three days. Some of this time is spent with mild symptoms, and we assumed 
that those who are severely symptomatic will take 2.5 days (range: 1.5–3.5 days) to become 
critically ill. If the hospital is not at capacity (i.e., . = 1), then this is also the time to be 
hospitalized. Experts on our team estimated that if patients needed to be hospitalized but 
hospitals were unable to accept more patients, then those that died would do so within three to 
five days of when they would have been admitted. We therefore assume that death would occur, 
on average, six days after severe symptom onset. 

Duration in the Hospital 

Wang, Tang, and Wei, 2020, found that the median hospital stay among those discharged 
alive was ten days. Because this quantity is highly uncertain, we assumed a mean of eight days in 
the hospital and a broad range (3–16 days), including ICU stays. We assume no age 
heterogeneity here.1 

Duration in the Intensive Care Unit 

Those who have critical illnesses and survive until discharge are assumed to take longer to 
recover than those who have severe illness (Moghadas et al., 2020). We assume that the total 
time spent in the hospital is longer for those who enter the ICU. In one study, only 10 percent of 
patients who entered the ICU had been discharged 12 days after entering the hospital (Arentz et 
al., 2020). We assumed that entering the ICU adds four days (range: 2.5–9 days) of hospital stay 

1 To model age heterogeneity, we could use results from Arentz et al., 2020, who found that 87 percent of 
hospitalized patients were aged 30 to 79 years (38,680 cases). This age group was the most affected by a wide 
margin, followed by ages 20 to 29 (3,619 cases, or 8 percent), those 80 and older (1,408 cases, or 3 percent), and 1 
percent each in those younger than ten and those ages ten to 19 years. 



  18 

and, therefore, we assumed that those who enter the ICU are in the hospital for an average of 
20.7 days. 

Duration Asymptomatic 

We assumed that the duration of all infected stages via the asymptomatic branch has a mean 
of 14 days. Because we assume a mean of five days to either develop symptoms or proceed with 
the asymptomatic stage, we assumed that the duration of the asymptomatic stage is nine days 
(range: 7–12 days). 

Table 3.4. Proportional Parameter Estimates 

Proportion 
Sample 

Distribution 
Reference 

Value 
Sensitivity 

Range Sources 

Asymptomatic proportion PERT 31% 18%–45% Day, 2020; Government 

of Iceland, 2020; 

Whitehead and Feibel, 

2020 

Ages 0–19, healthy and chronic conditions  48%   

Ages 20–24, healthy and chronic conditions  44%   

Ages 25–54, healthy and chronic conditions  28%   

Ages 55–64, healthy and chronic conditions  20%   

Ages 65–100, healthy and chronic conditions  19%   

Proportion of symptomatic cases that are severe Uniform 20% 15%–25% Yang et al., 2020; China 

Centers for Disease 

Control and Prevention, 

2020 

Proportion of severe cases that are critical Uniform 25% 20%–30% CDC, 2020b 

Proportion of severe cases that are hospitalized 

(when the hospital has remaining capacity) 

PERT 93% 80%–100% Expert judgment 

Proportion of hospitalized severe or critical cases 

that result in death 

PERT 12% 3%–24% Wu and McGoogan, 

2020; CDC 2020b 

Ages 0–19, healthy  0.9%   

Ages 20–24, healthy  2.6%   

Ages 25–54, healthy  7.2%   

Ages 55–64, healthy  12.6%   

Ages 65–100, healthy  17.4%   

Ages 0–19, chronic conditions  7.7%   

Ages 20–24, chronic conditions  10.2%   

Ages 25–54, chronic conditions  16.6%   

Ages 55–64, chronic conditions  24.2%   

Ages 65–100, chronic conditions  30.9%   

Proportion of severe cases that result in death 

when the ICU has no remaining capacity. 

Uniform 90% 80%–100% Expert judgment 
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Proportion 
Sample 

Distribution 
Reference 

Value 
Sensitivity 

Range Sources 

Proportion of severe and critical cases not 

hospitalized that result in death 

Uniform 40% 25%–55% Wu and McGoogan, 

2020; CDC 2020b 

Ages 0–19, healthy  2.9%   

Ages 20–24, healthy  8.7%   

Ages 25–54, healthy  24.1%   

Ages 55–64, healthy  42.1%   

Ages 65–100, healthy  58.0%    

Ages 0–19, chronic conditions  25.8%   

Ages 20–24, chronic conditions  33.9%   

Ages 25–54, chronic conditions  55.5%   

Ages 55–64, chronic conditions  80.6%   

Ages 65–100, chronic conditions  100%   

Proportion of nonhospitalized deaths without 

positive tests, which are not counted in reported 

deaths 

Uniform 50% 40%–60% Expert judgment 

NOTE: Age and chronic condition distributions are based on expert judgment. 

Symptomatic Versus Asymptomatic Split 

Day, 2020, found that, in an isolated Italian village where everyone was tested, 50 to 75 
percent of individuals were asymptomatic. A report from Iceland noted that blanket testing 
revealed that 50 percent of the people who tested positive had no symptoms (Government of 
Iceland, 2020). Per person, the transmission rate of undocumented infections was 55 percent 
(range: 46–62 percent) of documented infections, yet, because of their greater numbers, 
undocumented infections were the infection source for 79 percent of documented cases. More 
recently, Robert Redfield, director of the CDC, told NPR that as many as 25 percent of people 
infected remain asymptomatic (Whitehead and Feibel, 2020). Experts on our team agree that the 
proportion of asymptomatic individuals varies. We assume a wide range of possible values, from 
18 percent to 45 percent of all cases. We assumed that this changes as a function of age: 48 
percent of children and 19 percent of people older than 65 asymptomatic in the reference case. 
We consider age heterogeneity in Table 3.4. 

Mild Versus Severe Split 

Yang et al., 2020, concluded that a total of 81 percent of cases are mild, meaning that they 
did not result in pneumonia or resulted in only mild pneumonia; 14 percent of cases were severe 
(marked by difficulty breathing); and 5 percent were critical (marked by respiratory failure, 
septic shock, and/or multiple organ dysfunction or failure). A report by the China CDC, 2020, 
suggested that about 80 percent of COVID-19 cases are mild. About 15 percent of patients have 
gotten severe cases, and 5 percent have become critically ill. We therefore assumed that 20 
percent of symptomatic cases progress to severe status. 
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Nonhospital Mortality 

If the hospital has remaining capacity, most patients with severe disease will be hospitalized. 
But some percentage of patients might not be hospitalized and instead might die at home. A 
significant number COVID-19 deaths have been documented in New York nursing homes (New 
York Department of Health, 2020). To account for these deaths, we assume that, on average, 93 
percent (range: 80–100 percent) of severe cases are admitted to the hospital, with the remainder 
dying at home. Some of these deaths might not be counted in official death tolls. We assume that 
all hospitalized deaths and all deaths that occur in individuals who had a positive test are 
counted. We assume that 50 percent (range: 40–60 percent) of those who die outside the hospital 
and without a positive test are not counted.  

Mortality 

We assumed that only those who are severely symptomatic can develop critical conditions 
and that only those who are in critical condition can die. In China, all deaths were reported 
among those with critical disease (Arentz et al., 2020). Among severe and critical cases, there are 
three mortality rates to consider: the mortality rates for those not hospitalized, those hospitalized 
but not in the ICU, and those hospitalized in the ICU. We assumed that most severe cases (98 
percent) are hospitalized if the hospital is accessible. This accounts for a small proportion of 
people who die at home, usually without being tested for the disease. 

The China CDC found that 49 percent of those in the ICU died. This is consistent with CDC 
estimates that the proportion in the ICU who die is 39 percent to 72 percent. The China CDC 
also reports that 67 percent to 85 percent of ICU patients go on to develop ARDS. In our model, 
we assume that all patients entering the ICU are critical and will develop ARDS (CDC, 2020b).  

According to CDC, 2020b, a range of 26 percent to 32 percent of patients were admitted to 
the ICU. This is similar to the proportion of severely symptomatic people that develop critical 
conditions, which we assume to be 25 percent. We assume that 50 percent of those in the ICU 
die (Russell et al., 2020). We assume that all hospital deaths occur in the ICU if the ICU is 
accessible and, therefore, that the CFR in the hospital is 12 percent on average (range: 3–24 
percent) and is sampled from a beta-PERT distribution. This CFR is scaled based on the 
population strata, with older groups and those with chronic conditions more likely to die. This is 
based on evidence that CFR were shown to be higher in the elderly and in those with high body 
mass indexes and comorbidities (Wu and McGoogan, 2020). The China CDC found that, among 
those with preexisting conditions, the CFR was 10.5 percent for cardiovascular disease, 7.3 
percent for diabetes, 6.3 percent for chronic respiratory disease, 6.0 percent for hypertension, and 
5.6 percent for cancer (Wu and McGoogan, 2020). For those with no preexisting conditions, the 
CFR was 0.9 percent. 

As explained in the “Hospitalization and Intensive Care Unit” section, the model does not 
currently consider the case where hospitals and ICUs are at capacity. However, we hope to add 
this feature in the future. In this section, we discuss how we will model this eventuality. When 
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the ICU is at capacity, we assume that 90 percent of those who are unable to be admitted and 
would require mechanical ventilation in the ICU will die. This percentage is based on expert 
judgment from physicians. Therefore, 90 percent (range: 80–100 percent) of those who would go 
on to develop a critical condition die in the hospital. When both the ICU and hospital are closed, 
we assume that 40 percent (range: 25–55 percent) of those who have severe disease die because 
of lack of sufficient oxygen. This percentage is based on expert judgment and includes those who 
would have entered the ICU, so the proportion of severe but not critical patients who die when 
the hospital cannot be accessed is closer to 20 percent. 

Model Parameters 
Key parameters for this study include the rate at which those in the noninfectious incubation 

phase progress to the primary infectious stage, denoted by /; the rate at which those in the 
primary infectious stage progress to the asymptomatic and symptomatic disease states, denoted 
by 0$ and 0!, respectively; and the rate at which those with mild symptoms develop severe 
symptoms, denoted by 1. Rates of recovery and returning to a noninfected state are denoted by 2, 
3, and 3(. The parameters and their formulas are shown in Table 3.5. 

The rate at which those with severe symptoms get hospitalized is denoted by ℎ. 
Hospitalization is contingent on whether the hospital has reached capacity. We have an indicator 
variable . that can be either one or zero to model accessibility to the hospital. Those who are 
hospitalized but not yet diagnosed are assumed to be diagnosed upon entry to the hospital. We 
assume that those who have been diagnosed and have developed severe symptoms access the 
hospital at a faster rate ℎ) compared with those not yet diagnosed with severe symptoms. Those 
who are hospitalized either recover at a rate 3* or die at a rate 5*. 

Those with severe symptoms who have not been hospitalized yet are assumed to die at a rate 
5(. This rate is very small when the hospitals are accessible (i.e., . = 1). However, this rate is 
assumed to increase rapidly when hospitals have reached capacity and are no longer accessible 
(i.e., . = 0). The rates at which symptomatic and asymptomatic infected individuals are 
diagnosed is 7$ and 7!, respectively. These rates are assumed to change over time depending on 
the availability of testing kits. 

Our model considers a population that is split into different demographic strata based on five 
age groups and health statuses. Health status strata describe whether an individual has one or 
more underlying chronic diseases. The relationship between the rates 0! and 0$ depends on each 
population strata. This allows us to model different probabilities of being asymptomatic 
depending on age and health status. Likewise, the relationship between the mortality rates and 
the recovery rates also depends on population strata. 
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Table 3.5. Model Parameter Formulas 

 

Force of Infection 

The force of infection (9) describes the rate at which those who are susceptible become 
directly or indirectly infected by an infectious person. The force of infection is characterized by 
how infectious people are in each state. Two parameters describe this; specifically, the contact 
mixing, :, which describes the rate at which infectious people mix with others, and the biological 
transmissibility, ;,which defines the probability of transmission between an infectious and a 
susceptible person given a contact or other indirect interaction (e.g., touching the same elevator 
button within a given period). Each disease state would have a different content mixing rate and 
transmissibility. The unsimplified force of infection is given by Equation 3.1, where the 
coefficient : represents the social mixing contact rate and ; represents the transmissibility for 
each disease state. 

9 = [:+;+# + :%!";%!"$!" + :%!#;%!#$!# + :,!";%!"%!"   (3.1) 

+:,!#;%!#%!# + :*;%!#& + :%$;%$$$ + :$;$%$] 

Parameter Formula 

Noninfectious incubation phase length 1/+ 

Infectious incubation phase length 1/(-' + -!) 
Severe symptom onset to hospitalization 1/ℎ 

Hospital stay length (includes patients who are admitted to the 

ICU) 

1/(1( + 2( + 3) 

ICU stay length 1/(1)*+ +4) 
Severe symptom onset to death for those not hospitalized 1/1, 

Mild symptomatic phase length (might lead to severe disease 

or recovery) 

1/(5 + 2) 

Asymptomatic phase length 1/6 

Asymptomatic proportion -'/(-' + -!) 
Proportion of symptomatic cases that are severe 5/(5 + 2) 
Proportion of severe cases that are critical 3/(1( + 2( + 3) 
Proportion of severe cases that are hospitalized (when the 

hospital has remaining capacity) 

ℎ/(ℎ + 1, + 2,) 

Proportion of hospitalized severe or critical cases that result in 

death 

31)*+/(1( + 2( + 3)(1)*+ +4) 

Proportion of hospitalized severe cases that result in death 

when the ICU has no remaining capacity 

1(/(1( + 2() 

Proportion of severe or critical cases not hospitalized that 

result in death 

1,/(1, + 2,) 



  23 

Those who are in the primary infectious stage or are asymptomatic are unaware of their 
positive status and thus act as if they are not infected. However, those who have symptoms will 
reduce their contacts as their conditions become more severe or if they receive a positive test 
result. Likewise, tested asymptomatic people also will begin to practice increased social 
distancing to protect their social contacts. Thus, we can assume that social and physical contacts 
follow the inequalities in Equation 3.2. 

:+ = :%$ > :* 	> :%!" > :,$ ∼ :%!# > :,!" > :,!#   (3.2) 

Under ideal conditions, the physical contact rate that leads to disease transmission between 
health care workers and COVID-19 patients (:*) would be close to zero. However, contact 
precautions in health care settings cannot always be perfectly adhered to, given shortage of 
personal protective equipment and emergent situations. Hospitalized patients might have contact 
with many more individuals than those who are experiencing symptoms at home, so despite 
better proportions, we assume that transmission rates in the hospital are similar compared with 
those who are symptomatic but not being professionally cared for.  

The transmissibility of each of the disease states was at first assumed to increase with 
symptoms. However, recent studies have shown that viral loads peak in the primary infectious 
stage and decrease monotonically after the onset of symptoms (He et al., 2020; Zou et al., 2020; 
Kelvin Kai-Wang To et al., 2020). Thus, we assumed the relationship in Equation 3.3.  

;* ∼ ;%!# ∼ ;%!" < ;%$ ∼ ;+     (3.3) 

To simplify the force of infection, we define an effective contact rate :-.. and an effective 
transmissibility ;-... The product of these two :-..;-.. is assumed to characterize the rate of 
infections caused by an undiagnosed asymptomatic infected person in either state # or $$. Rates 
of infections in the other disease states are characterized using D coefficients that give the 
multiplicative effect on infectivity with respect to the primary infectious state or asymptomatic 
state. For example, D!# gives the overall average multiplicative infectivity of a symptomatic 
severe individual relative to an asymptomatic individual. This multiplicative factor combines the 
effect of decreased social mixing with increased biological transmissibility. We choose the 
asymptomatic untested individual as our reference because they do not change their social 
mixing behavior. The infectivity of each state relative to the primary infectious stage is shown in 
Table 3.6. 

The expression for the force of infection is described in Equation 3.4. 

9 = :-..;-..[# + D!"$!" +D!#$!# +D/!"%!" +D/!#%!# +D*& + $$ +D/$%$] (3.4) 
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Table 3.6. Infectivity Multiplier Estimates 

NOTE: N/A = Not applicable. 

Testing Rates 

The last set of parameters represents testing. Under the assumption of unconstrained testing 
rates, the parameters 7$ and 7! describe the per-person testing rates of those who are 
asymptomatic and symptomatic, respectively. The latter includes only those who are 
symptomatic and are not yet hospitalized. Those who are symptomatic and hospitalized are 
considered tested if they did not previously test positive. The final per-person testing rate 7 is 
associated with all the tests on the susceptible, the exposed, and those in the primary infection 
stage. This rate includes the true negatives and the false negatives. The assumption of 
unconstrained testing rates means that anyone who seeks a test is tested and, therefore, testing 
capacity can accommodate the growth of the epidemic, including the exponential phase. The 
model diagram shown in Figure 3.1 considers unconstrained testing rates. However, the 
implementation of the model considers constraints in the daily number of testing kits that are 
available. This number is assumed to start low and grow linearly to a predefined maximum daily 
testing rate capacity. Thus, the actual rates describing the testing rates from each disease state 
could be reduced based on the capacity constraint. We assume that people who are hospitalized 
take priority and are tested first. The remaining number of testing kits is then assumed to be used 
to test those with severe symptoms. After that, the remaining number of testing kits is used to 
test to test those with mild symptoms, followed by the asymptomatic. In a model which included 
health care workers as a separate strata, these would be assumed to be treated first. This approach 
requires specifying a constant proportion of testing kits used to successfully identify those who 
are COVID-19–positive compared with those that are COVID-19–negative. This constant 
proportion, along with the initial testing capacity and the growth rate in testing, are found from 

Disease State Symbol 
Sample 

Distribution 

Infectivity Relative 
to Primary 

Infectious Phase Sensitivity Range 

Primary infectious N/A N/A 100% N/A 

Secondary infectious: mild symptoms, no 

positive test 

7!" PERT 80% 50–160% 

Secondary infectious: severe symptoms, 

no positive test 

7!# PERT 60% 40%–120% 

Secondary infectious: mild symptoms, 

positive test 

7-!" PERT 50% 20%–100% 

Secondary infectious: severe symptoms, 

positive test 

7-!# PERT 25% 20%–100% 

Secondary infectious: hospitalized 7( PERT 20% 10%–80% 

Secondary infectious: asymptomatic, no 

positive test 

N/A N/A 100% N/A 

Secondary infectious: asymptomatic, 

positive test 

7-' PERT 70% 40%–140% 
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analyzing testing rate data for each state. Testing rates depend on the testing policy. In our 
model, a testing policy is specified by the initial daily testing capacity, a continuous 
differentiable function describing how the capacity grows over time, and the maximum daily 
capacity. 

Differential Equations and Model Outputs 
Our deterministic model is formulated by a set of coupled ordinary differential equations 

(ODEs). The ODEs describing the dynamics of those who have been infected are: 

E"
EF

= 9! − /",

E#
EF

= /" − (0! + 0$)#,

E$!"
EF

= 0!# − [1 + 3 + 7!]$!"

E$!#
EF

= 1$!" − [3( + 5( + ℎ. + (1 − .)7!]$!#

E%!"
EF

= 7!(F)$!" − (1 + 3)%!"

E%!#
EF

= 1%!" + (1 − .)7!$!# − [3( + ℎ). + 5(]%!#

E&
EF

= .(ℎ$!# + ℎ)%!#) − (5* + 3*)&

E$$
EF

= 0$# − [2 + 7$]$$

E%$
EF

= 7$(F)$$ − 2%$

	

E&%&'
EF

= .%&'H& − (5%&' + 	I)&%&' 

The ODEs describing the dynamics of the susceptible and the noninfected removed states 
are:  

E!
EF

= −9!

E(
EF

= 5(($!# + %!#) + 5*&,

E'
EF

= 3($!" + %!") + 3(($!# + %!#) + 3%!" + 3*& + 2($$ + %$)

	

These ODEs are integrated numerically to track the dynamics of the population in each 
compartment as they change over time. The model is implemented in “R” using the deSolve 
package (Soetaert, Petzoldt, and Setzer, 2010), using the lsoda and the fourth-order Runge Kutta 
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Method (Hindmarsh and Petzold, 1995). Thus, the model can track the point prevalence of 
people in each of the compartments and for each population strata. 

Additional Outputs 

We also can extract and combine incidence rates that flow into different compartments to 
track the cumulative quantities by population strata. Our model focuses on the following six 
additional outputs that are based on tracking incidence rates: 

1. true cumulative case counts: 0&%
0/

= 9! 

2. reported cumulative case counts 0&&
0/

= 7!$!" + 7!(1 − .)$!# + ℎ.$!# + 7$$$ 

3. cumulative number of people tested 01
0/
= J̇2 + 73(! + " + #) 

4. reported recovered 02&
0/

= 2%$ + 3*& + 3%!" + 3($!# 

5. reported deaths: 04&
0/

= 5(%!# + 5*& 

6. reported CFR: CFR2(F) = (2(F)/J2(F).

Estimating !! and the Force of Infection 

Model parameters describing disease progression can be estimated directly. Disease 
transmissibility and contact rates in each disease state are harder to estimate. This requires 
estimating the D coefficients and the :-..;-... The values of the multiplicative coefficients and 
their ranges are estimated using expert opinion. The value of the effective infectivity :-..;-.. 
and its range is instead estimated from the value of '5. The basic reproductive number '5 
represents the average number of secondary infections caused by an infectious person during the 
time they are infectious and at disease invasion. This represents the early stage of the epidemic, 
when each infectious person is surrounded by susceptible individuals. To extract an estimate for 
'5, we use the number of reported cases during the early stages of the epidemic. In the region 
where the growth is exponential, the log of the case counts and the log of the deaths increase 
linearly with time. A linear regression of the log of the case counts time series and a regression 
of the log of the deaths provide estimates for the growth rate P. The estimated value of '5 from P 
can be found using Equation 3.5 (Heffernan, Smith, and Wahl, 2005). 

'5 = 1 + P(Q6 + Q%) (3.5) 

The time scale Q6 + Q% represents the typical duration for which a person is infected and is 
the sum of the durations of the noninfectious incubation phase and the infectious phase. The 
value of Q depends on the disease progression times and, more specifically, on the dwelling or 
sojourn times of those in each of the infected disease states. These sojourn times are model 
inputs. Roughly, Q6 + Q% is between 14 and 21 days. 
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The estimation of the value of the growth rate P and hence of '5 using a linear regression 
approach has limitations. In the exponential phase, case reports are not very reliable because of 
backlogs and limited testing capacity. By the time testing rates and capacity stabilize, many 
jurisdictions are already in a stage where they have implemented social distancing. We have 
taken the approach of prioritizing the use of state-specific death data during the disease invasion 
exponential growth phase for each U.S. state to obtain their respective growth rates. However, 
some states produce a linear regression with an unacceptably bad fit to the data. For these cases, 
we assumed that the value of '5 is between two and four based on the population density of the 
state. In this case, the value of '5	is assumed to range from two for the state with the lowest 
population density to four for the state with the highest population density. 

We use the value of '5 to estimate :-..;-... To do this, we need an algebraic expression for 
'5 that is specific to our model structure. In simple mathematical models of infectious diseases, 
such as Susceptible-Infected-Removed (SIR) or SEIR models, '5 can be expressed as the 
product of three terms, as shown in Equation 3.6. 

'5 = :;Q%       (3.6) 

Compared with an SEIR model, our COVID-19 model considers more-infectious 
compartments with different contact mixing and transmissibly values and compartments that 
branch off from each other. '5 can be expressed as the product of three terms in a similar way 
'5 = :-..;-..Q-... By analyzing our coupled ODEs using the next-generation matrix approach, 
we get the expression for Q-.. shown in Equation 3.7. 

Q-.. =
(8'9:')[=$($*989:)9>($*989"=!9:)]9>$*"'=!

>(=$9=!)(8'9:')($*989:)
   (3.7) 

This expression has been simplified by considering the case where testing rates 7$ and 7! are 
zero. '5 is estimated during the disease invasion stage, when cases grow exponentially and 
testing rates are very small. We note that although Q-.. expresses a time scale, it includes the 
multiplicative coefficients D. Thus, Q-.. gives the time scale of the whole infectious state’s 
Q% 	when all multiplicative coefficients D are set equal to one. Using a more-direct approach 
instead of the next-generation matrix approach, we verified that the expression for Q-.. does 
indeed give Q% when all multiplicative coefficients D are set equal to one. Because 

'5 = :-..;-..Q-.. ⇒ :-..;-.. =
2(
@)**

,   (3.8) 

we can use the values for the multiplicative coefficients and the progression rates used in the 
model to find the value from Q-.. and, together with our estimate for '5, we can obtain the value 
for :-..;-... This, in turn, can be used to obtain 9, the force of infection. 
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Mixing Matrices and Interventions 
Our model considers different population groups or strata, such as age group, health status, 

and whether individuals are health care workers. The simplest stratification considers five age 
groups. Moreover, we consider different activity levels or modes of social mixing between these 
population strata. When considering different population strata and mixing modes, we describe 
how the contact rate :-.. that enters the equation for '5 depends on the mixing across population 
strata and over the different mixing modes (household, work, school, commercial, recreational, 
and other). 

For this first version of the model, we consider ten population strata in five age groups with 
and without underlying conditions; our analysis produces the following outputs: 

1. a set of ten-by-ten matrices M" denoting the proportion of contacts of individuals in
population strata (row) T that mixes with those in population strata (column) U over
mixing mode D. Thus, each row sums to one.

2. a set of vectors k" with five elements each, giving the normalized number of contacts (or
duration of contacts) that individuals in age group T have over mixing mode D.
Normalization implies that the sum over the elements T of k" is one.

3. a set of scalars W" giving the proportion of contacts (or duration of contacts) describing
the status-quo distribution of weights based on how people mix over the different mixing
modes.

Thus, under status-quo conditions, the number of contacts can be expressed using Equation 3.9 
with a proportionality. 

:-..(sq) ∝ [1 ⋅ {∑ W"" (sq)[diag(c") ⋅ d"]} ⋅ [ (3.9) 

Here, sq denotes the status-quo mixing conditions and diag(c") ⋅ d" gives the contact 
matrix, where the sum across each row for mixing mode D is proportional to the true number of 
daily contacts (or duration of contacts). The vector [ is the distribution of the population of the 
state across the population strata. The actual mixing matrix is given mathematically by Equation 
3.10. 

∑ W"" (sq)[diag(c") ⋅ d"] (3.10) 

Therefore, having computed :-..;-.. from '5, we find the proportionality constant f as 
shown in Equation 3.11. 

:-..(gAB);-.. =
2(
@)**

= f[1 ⋅ {∑ W"" (sq)[diag(c") ⋅ d"]} ⋅ [ (3.11) 
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We assume that the proportionality constant f remains the same value as we explore different 
social-distancing NPIs.  

Interventions 

Social-distancing NPIs can be thought of as changing the locations in which people spend 
their time and mix socially. We follow an approach outlined by Prem, Cook, and Jit, where the 
effect of NPIs is modeled as a set of scalar weights on different mixing modes, W"($), where $ is 
the intervention (Prem, Cook, and Jit, 2017). For example, if schools were closed (represented as 
h:ℎiij), we could define the value of W#C*BBD(h:ℎiij) = 0, W*BE#-*BD0(h:ℎiij) >
W*BE#-*BD0(hk)	to represent greater time spent at home and WFBGH(h:ℎiij) <
WFBGH(hk)	because some parents are likely to stay home to take care of their children. In our 
model, W" is proportional to the number of daily unique contacts that occur in location D. At 
baseline, the weights sum to one, ∑ W"" (hk) = 1. However, the sum of the weights under 
different interventions need not sum to one. This is because weights represent unique contacts, 
and the goal of NPIs is to shift time and mixing to locations where there are few unique contacts. 
Consider a stringent intervention that confined people to their home. Although weights would 
decrease to zero for all locations except the home, the home weight might not increase 
significantly because spending more time at home does not increase unique contacts if all of the 
members of the household were contacts at the baseline scenario. Thus, NPIs can decrease the 
value of :-.. through reducing social mixing, although some interventions might simply displace 
mixing from one location to another. 

Contacts within the home are a special case because they reliably occur between the same 
people each day. This is in contrast with other settings where contacts vary daily. This means 
that, on average, a contact within the home contributes less to disease transmission than a contact 
outside the home. To model this, we assume that transmission within the home is proportional to 
the mixing that is occurring in other locations, so as these weights decrease, the weight on 
W*BE#-*BD0 also decreases. The values of W*BE#-*BD0 for each intervention are the product of the 
household mixing estimated by our team and the weighted change of mixing in other contexts 
relative to baseline. 

Table 3.7 shows the weights used at baseline and for each intervention. The baseline weights 
were determined by the relative number of contacts that occur in each matrix. The matrices are 
normalized so that the row sums are equal to one and the weights are proportional to the 
population-weighted normalization factor. For instance, at baseline there is relatively more 
mixing at work than in recreational settings, so this has a higher baseline weight. Using our 
combined matrices, 32.8 percent of unique contacts occur at work. The normalized matrices 
describe the groups between which mixing occurs, and the weights for each matrix quantify how 
much mixing occurs. Within the model, we allow the strength of NPIs to vary across states based 
on calibrating case counts and deaths to the data. The difference in the sum of the weights 
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between each NPI and baseline is allowed to vary in the range of 90 percent to 110 percent of the 
reference values given in Table 3.7. A lower weight indicates that NPIs are less effective, 
perhaps because of lower compliance or environmental factors, whereas a higher weight 
indicates that they reduce social mixing to a greater extent. 

To model the impact of an intervention, we need to make an assumption about what replaces 
the intervention after it is removed. We term this the new normal. This new normal is highly 
uncertain. If the effective '5 in the new normal is above one, then there will be rebound and a 
second wave of cases. If it is below one, then there will be no such second wave. Like in other 
models, we assume that the new normal would be less intense than social distancing, but that 
mixing would be about half normal levels (Biocomplexity Institute, 2020). We also assume that 
new normal mixing will be lower if prior interventions were more stringent. To simulate the new 
normal, we assume that mixing in the new normal is the average of mixing in the last 
implemented intervention and mixing at baseline. 

Table 3.7. Intervention Mixing Matrix Weights 

NPI Portfolio 8./012./34 85/67 818.//3 88/99268:;3 862862;<:/=;3 8/<.26 

Baseline 18.4% 32.8% 16.1% 9.0% 4.2% 19.5% 

Level 1: Close schools 14.7% 23.0% 0.0% 9.0% 5.1% 17.5% 

Level 2: Close schools, bars, and 

restaurants; and ban large events 

12.1% 23.0% 0.0% 6.3% 3.8% 11.7% 

Level 3: Close schools, bars, and 

restaurants; ban large events; and close 

nonessential businesses 

4.3% 6.6% 0.0% 3.6% 3.0% 5.8% 

Level 4: Close schools, bars, and 

restaurants; ban large events; close 

nonessential businesses; and quarantine 

the most vulnerable (shelter-in-place) 

3.9% 6.6% 0.0% 3.4% 2.5% 5.0% 

Level 5: Close schools, bars, and 

restaurants; ban large events; close 

nonessential businesses; and quarantine 

everyone but essential workers (shelter-in-

place) 

2.7% 6.6% 0.0% 2.7% 0.8% 1.9% 

Other Models 

A growing number of models have been developed by health care systems, academic 
institutions, consulting firms, and others to help forecast COVID-19 cases and deaths; medical 
supply needs, including ventilators, hospital beds, and ICU beds; and timing of patient surges. 
The American Hospital Association (AHA) has compiled a summary report that compares 
existing efforts (AHA, 2020). 

Two notable COVID-19 models that use a system dynamics approach are the CHIME model, 
developed by Penn Medicine, and the PatchSim model, developed by the University of Virginia. 
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Both are geographically specific, assume an R0 of approximately 2.5, and model social 
distancing as reducing rates of infection by 25 to 30 percent. The CHIME model uses a SEIR 
compartmental model and aims to assist hospitals and public health officials with hospital 
capacity planning. The hospital bed and ICU bed utilization numbers are based on fixed ratios. 

The University of Virginia uses a meta-population compartmental model and considers the 
spread between geographic areas using travel data. It uses detailed country data for different 
geographical regions, and each region is calibrated. The model is calibrated using a past model 
and data on influenza spread to refine model of spread. 

An alternative to system dynamics is to use a statistical-based approach. The most notable 
statistically based model was developed by the Institute for Health Metrics and Evaluation 
(IHME). The IHME model was designed as a planning tool for hospital administrators and 
government officials who need to know when the demand on health system resources will be 
greatest. The IHME uses a variety of statistical models based on curve-fitting algorithms to 
generate forecasts of deaths and hospital resource needs. Some infectious disease 
epidemiologists have criticized the IHME model because they believe that it is not well suited to 
describe the COVID-19 transmission dynamics. Fundamentally, this is because it uses a 
statistical curve-fitting model approach that replaces an underlying causal model for transmission 
and disease progression (Begley, 2020). 

Limitations 
In this section, we discuss some of the limitations of our model. These are split into 

limitations of the modeling techniques chosen, data limitations, and features that are currently 
missing but could be added in the future. 

Modeling Limitations 

As discussed earlier, population-level models are more useful for comparing the relative 
impact of different interventions than as forecasting tools. They make strong assumptions about 
functional forms and about how the outbreak will progress. These assumptions allow them to be 
built and deployed quickly with relatively little data, but such assumptions also limit the extent to 
which models can be tuned to observed outbreak statistics (Manheim et al., 2016). 

All population models are based on the law of mass action, which assumes that individuals 
within a given strata and compartment mix homogenously.2 Humans generally do not mix 
homogeneously, but this approximation often is close enough to be useful. This assumption 
limits the interventions that can be investigated because it does not allow some individuals 
within a compartment to act differently to others. Agent-based models (ABMs) and 

2 In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional 
to the product of the activities or concentrations of the reactants. 
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microsimulations are better suited to depart from mass-action homogeneity in mixing but are 
much harder to inform, develop, and deploy. ABMs are thus less agile and adaptable to new 
information or circumstances. 

ODEs make assumptions about the smoothness of functions. However, reactions during an 
outbreak can be discontinuous, either because of reporting errors or because the real world does 
not operate smoothly. For instance, COVID-19 testing up until March 16, 2020, in New York 
state showed that more than 70 percent of tests were coming back positive. On March 17, 2020, 
an additional 2,687 negative tests were reported, almost 30 times the sum of all negative tests 
reported before that date, and the positive proportion fell to below 15 percent. ODEs are not 
designed to accommodate such discontinuities and therefore might have problems fitting data 
accurately. 

ODEs do not distinguish between individuals in each compartment; individuals are selected 
at random. Thus, the last to enter the compartment can be the first out. Although average 
parameters can be matched, this leads to an exponential dwelling time distribution for each 
compartment. This is unlikely to be a good model for the process. One way to correct for this 
limitation is to create a series of compartments for each disease state. The dwelling time across 
all these compartments can be made to correspond to an Erlang or Weibull distribution 
(Oguntunde, Odetunmibi, and Adejumo, 2014). However, this correction is not currently 
implemented within the model, and we therefore assume exponential dwelling time distributions. 

Population-level models belong to a theory-based class of models. In contrast to statistical 
models, which are based on regression or machine-learning techniques, theory-based models 
specify a conceptualization of the disease progressions and causal links in the dynamics. Other 
theory-based models include microsimulation models and ABMs. Population-level models are 
relatively simple to conceptualize and implement. They have less challenging data requirements, 
less challenging computation and execution time requirements, and less complexity than other 
types of models, including other theory-based models. The speed and ability to represent changes 
in the disease dynamics make population models particularly useful for exploring different 
features of disease dynamics. However, this simplicity comes with a set of limitations. 
Population-level models are based on the assumption of the law of mass action and, thus, they 
assume homogenous mixing in the population. This limitation is alleviated by specifying 
different population strata and a contact matrix but the degree to which heterogeneous mixing 
occurs is limited by the number of population strata. Because population-level models are 
formulated by ODEs that are integrated numerically by solvers, careful attention needs to be 
taken in terms of making sure that the integration is accurate, stable, and converges (Press et al., 
1992). These solvers are not very well suited in modeling parameter values that change abruptly 
or according to a prespecified time series. This presented some challenges in modeling the 
variable testing rates and accessibilities to the hospital.  

Population-level models usually are formulated as deterministic differential equations and do 
not capture uncertainty resulting from chance variation well. They do not track the trajectories of 
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single individuals but rather capture the dynamics of population densities in each disease state. 
Thus, they can consider a fractional number of people in each disease state. This can be a 
problem because a fractional number of people can still lead to new cases of infections when, in 
reality, the disease prevalence might be low enough that the probabilistic expectation of new 
infections is unlikely. Although these models do not track individual trajectories, the last person 
into any disease compartment has the same chance of progressing out of the compartment as 
anyone else. This naturally leads to a memory-less process and to an exponential dwelling time 
distribution of individuals in each compartment. This can cause issues if the subsequent 
infectious compartment is characterized by a very different contact rate and transmissibility. This 
is a known issue that can be corrected by concatenating multiple compartments that each 
describe the same disease state. This leads to a convolution of exponential dwelling time 
distributions and thus an Erlang distribution (Oguntunde, Odetunmibi, and Adejumo, 2014; 
Greenhalgh and Rozins, 2020). 

More generally, population-level models are a good modeling choice for comparing potential 
interventions but are less useful than statistical models for forecasting disease incidence. They 
provide a good approach when used for qualitative understanding of disease outbreaks. In 
particular, they are excellent for comparing potential future interventions. They also run rapidly, 
require less input data, and their results and structure are communicated easily. However, they 
are harder to tune to match observed outbreak statistics or to give accurate quantitative 
predictions. 

Data Limitations 

Unobservable True Cases 

Ideally, any epidemic model would be built using time series of the true case count. 
However, because many cases of COVID-19 are asymptomatic and because cases are verified 
only through testing, the true case count cannot be observed. Instead, we observe two imperfect 
proxies: confirmed cases and deaths. 

Confirmed cases are confounded by testing rates. In locations where there are few tests 
conducted, it appears as if there are few cases. Changes in the testing rate confound attempts to 
estimate the '5 by fitting curves to case counts. Initial testing shortages, followed by a sharp 
increase in availability, causes a surge in the number of confirmed cases, which causes 
overestimation of '5. This pattern is common across the United States, particularly in New York. 

Deaths are an imperfect proxy of true cases for several reasons. The time between 
contracting the disease and death (assuming admission to the hospital) is approximately three 
weeks. Therefore, estimations of the true case count or the effectiveness of NPIs based on deaths 
are almost one month out of date. Furthermore, COVID-19 has a relatively low CFR. This means 
that there are many true cases for each death. In small communities, the number of deaths might 
be so low that there is too much noise to accurately judge the true case count. These effects mean 
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that it is difficult to use deaths to show the prevalence of COVID-19 outside population centers, 
and such estimates will always be out of date. 

Additionally, deaths might be confounded by testing. Deaths might be attributed to COVID-
19 only if individuals die in hospital and have a positive COVID-19 test. This number is an 
underreport because it does not count those who were not tested or those who died at home. 

Measurement Error 

COVID-19 tests are conducted at testing centers and medical clinics around the country. 
Testing results are reported by lab services companies and are aggregated at the state level. There 
might be errors or delays in this process, which means that testing time series are not reported 
correctly. Similarly, it might be difficult to attribute some deaths to COVID-19. These factors 
introduce errors into the data, which limits the ability of any model to accurately predict true 
cases and, therefore, future outcomes. 

Parameter Estimates 

Parameter estimates are discussed in detail earlier and are summarized in Table 3.3. For 
many of these parameters, such as the proportion asymptomatic, mixing matrices across age 
groups, and CFRs, there are widely agreed-upon estimates. The model is highly sensitive to 
many of these parameters, and these sensitivities are explored through Latin-Hypercube 
sampling. Interpretations of point estimates from the model must take into account these 
significant uncertainties and the corresponding confidence intervals. 

Future Features for Consideration 

Hospital and ICU Capacity 

This report details how we would modify CFRs if the hospital and ICU were to reach 
capacity and were therefore unable to accept more patients. However, these modifications are not 
currently implemented because of the difficulty of reproducing current hospitalization data 
(which may be unreliable). Because we do not model the impact of the health care system being 
overwhelmed, we likely understate the number of deaths in states where hospital admissions 
exceed capacity. In the future, we hope to better fit hospitalizations and therefore implement 
these CFR modifications.  

Better Estimates for the Basic Reproductive Number 

Our approach in estimating the growth rate—and thus the value for each state—is simplistic 
and has limitations. A better approach is to scale the reported case counts based on a 
vulnerability factor that takes into account the differences in population demographics and the 
proportions of the vulnerable or at-risk population (Lachmann et al., 2020).  
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Seasonality 

Influenza exhibits seasonality in temperate climates, with outbreaks typically occurring 
during the winter months. Seasonality is thought to be because of a combination of cyclic 
immunity; lower immune activity during periods of low light; greater crowding in cold months; 
indoor heating; and improved virus survival in cold, dry conditions (Lofgren et al., 2007). It is 
unknown whether COIVD-19 will exhibit seasonality and whether transmission might be greater 
in certain environmental conditions. Given the wide variation in climate across the United States, 
it is possible that the virus might spread more rapidly in cool, dry locations (which would 
manifest as a larger '5). We would like to explore this by changing transmissibility in states that 
have climates that are more favorable to flu transmission to see whether this explains some of the 
variation in '5. 

State Mixing 

Currently, the model assumes that no mixing occurs across state lines. This assumption might 
be of little consequence now because the virus has already spread to almost every county in the 
United States. This makes new seeding events relatively unimportant. However, as the virus 
becomes more controlled in some areas of the country, preventing travel to other states could 
prove crucial to controlling cases. Many countries, such as China, have banned travel from 
noncitizens and introduced mandatory quarantines for returning nationals. U.S. states might take 
similar actions in the future. We hypothesize that state mixing is a function of the number of 
flights between two states, state populations, and state adjacency. Future iterations of this 
research could try to model the effect of state mixing and understand the impact of NPIs that are 
designed to decrease it. 

Behavioral Feedback 

NPIs rely on compliance to be effective. Compliance might change as a function of perceived 
risk and perceived cost of complying. Compliance is likely to be especially important as social-
distancing measures are relaxed and the perceived risk decreases. We would like to model how 
compliance changes with perceived risk. One avenue currently being explored relates mobility 
data and social media activity to case counts.  

Nonpharmaceutical Intervention Combinations 

The NPIs considered within the model are limited to five prespecified NPI combinations and 
a baseline scenario. In the future, it would be useful to consider more combinations of NPIs. One 
could model how NPIs interact such that any NPI combination could be modeled. This might be 
useful for states thinking about the order and timing of relaxing social-distancing measures. 
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Mixing Matrix Changes 

The effect of NPIs is modeled through changing the weights of mixing matrices. This 
assumes that NPIs change how much mixing occurs in each location, but not how people mix in 
that location. One example is that commercial mixing, which usually would include bars and 
restaurants, is now limited to grocery stores. This means not only that less mixing is occurring, 
but also that a smaller proportion of that mixing is between young adults and other young adults. 
We could introduce more flexibility into how changes in NPIs are modeled by premultiplying by 
nondiagonal matrices rather than by scalars or diagonal matrices. 

Removing Interventions: A New Normal 

We assume that, after interventions are removed, mixing reverts to a new normal with 
approximately half of baseline mixing. In reality, there is likely to be a slow reversion to normal, 
which would occur at different rates in different contexts. For instance, many businesses might 
be quick to reopen to maintain their cashflows, but many schools have already announced that 
they plan to remain remote for the fall 2020 term. In future versions, we could model these 
reversions as a decay from the last intervention applied to a new normal with different time 
scales for different contexts.  

Additional Population Stratifications 

We have stratified our population into five age groups. The first is made up of individuals 
ages zero to 19. In a future version, we will further stratify this age group. This would allow us to 
explore additional interventions, such as comparing school closure for students in high school 
only or reopening schools in phases based on grade.  
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4. Economic Model

We developed a model of each state’s economy that incorporates the relationships across 
industries, households, and government. We modified an existing model to quickly estimate the 
effects of the selected NPI portfolios (see Table 2.2 in Section 2) by changing the definitions of 
industries to reflect how the NPIs are likely to interact with the economy. Our approach is to 
restrict output in certain sectors consistent with industry estimates or with previous literature 
regarding NPI impacts. We then allow these restrictions to flow through the economy and affect 
other sectors and households to produce an estimate of the total economic impact in terms of lost 
income to households. The model is calibrated using readily accessible data and is intended to 
provide rough order-of-magnitude estimates of the economic consequences associated with 
various social-distancing interventions. 

Model Details 

Our approach to the development of a computable general equilibrium (CGE) model is based 
on the work of Sue Wing, 2007; Rausch and Rutherford, 2008; and Nadreau, 2015. The 
Economic Impact Analysis for Planning (IMPLAN) Social Accounting Matrix for each state is 
used to calibrate the initial values of parameters within the model. We use 2016 data because 
they reflect the most-recent information to which we have ready access for the entire United 
States. The IMPLAN data provide calibration values for 536 different sectors. IMPLAN data are 
based on the national-level input-output tables developed by the Bureau of Economic Analysis 
(BEA) and then downscaled to the local levels using a proprietary algorithm. IMPLAN has been 
a staple of regional economics for the past 40 years.3 To deliver a manageable modeling process 
and ensure a clear interpretation of results, we aggregated the 536 sectors to 15 sectors (as 
recommended in the methodology implemented by Nadreau, 2015), but we also develop specific 
sectors that are likely to be affected by state and local social-distancing policies. Each sector is 
viewed as having a representative firm that is assumed to maximize profit, implying that it uses 
the least-cost combination of inputs needed to produce its output. It is further assumed that the 
firm is a price-taker in a competitive market and the sector is in equilibrium—i.e., the quantity 
supplied equals the quantity demanded. In addition to data on consumption and earnings for nine 
representative households by income level, IMPLAN also offers relevant data for both state and 
local governments and federal governments. Households are assumed to maximize utility, taking 

3 Recently, Thomas Rutherford and Andrew Schreiber developed an open-source method for downscaling the BEA 
tables, but the authors have not sufficiently vetted the algorithm to see whether it provides advantages over the 
IMPLAN data. For more information on this approach, see Rutherford and Schreiber, undated.  
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good and factor prices as given.4 Finally, markets clear as prices adjust, with global prices 
assumed to be constant for imports and exports. Thus, we assume that each state or metropolitan 
area is a small, open economy that does not affect global prices. Our approach is to build a static 
general equilibrium model of the economy of each state and then limit sector output by the 
impact of social-distancing policies. Our model is a standard general equilibrium model that has 
been used to estimate regional and national impacts of policy changes across a wide variety of 
settings. We provide a brief overview of the model and advise the reader to consult Sue Wing, 
2007; Rausch and Rutherford, 2008; and Nadreau, 2015, for more details. We have provided our 
choices regarding key parameters in the text. 

Firm’s Problem 

In the development of our calculation, we modeled the production in each sector i as a 
representative firm that has chosen its output to maximize profit at a given price. In our model, 
firms are assumed to be perfectly competitive, meaning that they do not set prices but respond to 
prices in their decisionmaking. The production process follows a nested, constant elasticity of 
substitution (NCES) function as described in Equation 4.1: 

%I/ = Ilmn;oI
J + (1 − ;)pI

Jq
+
, + (1 − m))n∑ nrKsIKq

=
K q

+
-t

L/N

  (4.1) 

where oI is capital used in sector i, pI is labor used in sector i, and sIK are intermediate inputs 
produced by sector j that are used by sector i. We choose an NCES production function because 
of its flexibility and because Perroni and Rutherford, 1995, have proven that calibration of the 
NCES is possible for an arbitrary dimension as long as the given Slutsky matrix is negative 
semidefinite, the function will have the appropriate convexity conditions to ensure an 
equilibrium. Other functional forms could be used.  

We rewrote these production functions in the calibrated share form to allow for an easy 
calibration using the existing IMPLAN data. We assume that u is set so that the implied 
elasticity of substitution is zero (i.e., perfect complements); v is set so that the implied elasticity 
is one and results in a Cobb-Douglas production function; and 0 is set to imply an elasticity of 
four.5 Thus, the intermediate goods that are inputs in production are more substitutable than 
capital and labor. Additionally, the aggregate capital-labor input and the aggregate intermediate 

 
4 Income in the IMPLAN data is total income from earnings from labor, land, capital, and from government 
transfers. 
5 Rather than discuss the parameter values of ", $,	and &, we opt to report the implied elasticities because these have 
more readily accessible meaning for economists. Our assumption of perfect complements in the uppermost nest 
implies that the functional form degenerates to a minimum operator of the inputs. These parameter choices are 
consistent with Nadreau, 2015. 
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input are assumed to be perfect complements. Finally, m, ;, and rK are expenditure share 
parameters, and I is a technological adjustment parameter. 

Consumer’s Problem 

The consumer’s problem is quite similar to the producer’s problem. We assumed that a 
representative household maximizes utility, receiving income from the factors of production 
(capital and labor), net sales of exports, transfer payments from either the federal or state 
government, and investments in inventory. Households must balance their budgets and supply all 
factors inelastically. We discuss how households are affected by social-distancing policies in a 
later section. We assumed that the utility function is simply a Cobb-Douglas utility function, 
calibrated to the consumption data in the IMPLAN data. We normalize the amount of labor and 
capital to the 2016 levels using Equation 4.2:  

wI =	∑ mIln	((I)I       (4.2) 

where mI is the budget share of good i in the benchmark data and (I is household demand of 
good i. 

Equilibrium 

We calibrate the model to the initial conditions defined by the social accounting matrices 
produced from the IMPLAN data. The static model was written in the General Algebraic 
Modeling System (GAMS) using the Mathematical Programming System for General 
Equilibrium (MPSGE) subsystem and uses the Path solver. An equilibrium is characterized by a 
set of goods and factor prices together with market-clearing levels of production and 
consumption.  

Regions 

We replicate the analysis for all 50 states as well as a national-level model. In future 
iterations, we will add metropolitan areas. 

Sectoring 

For the CGE model, we divide the economy into 13 sectors. For a social-distancing analysis, 
the key sectors with direct impacts are restaurants and bars; hospitality (generally); education; 
nonessential retail; and air transportation. These sectors correspond to IMPLAN sectors as 
shown in Table 4.1. 
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Table 4.1. IMPLAN Sectors in Social-Distancing Sectors 

Sector Sector Stub IMPLAN Sectors 

Restaurants and bars REST 501–503 

Hospitality HOSP 488–500 

Education EDU 472–474, 532, 534 

Air transport AIRT 408 

Nonessential retail NERT 396–399, 403–407 

 
In addition to the five sectors identified, there are sectors that correspond to agriculture, 

construction, utilities, fossil fuels, wholesale and retail trade, mining, food processing, 
manufacturing, services, and the rest of the economy. These divisions follow Nadreau, 2015. 

Implementing the Nonpharmaceutical Intervention Portfolios 

To implement the five NPI portfolios described in Table 2.2 in Section 2, we map each 
intervention in each portfolio to five sectors within the economy: (1) education; (2) restaurants 
and bars; (3) hospitality, including hotels, museums, and amusement parks; (4) air transport; and 
(5) nonessential retail. We normalize the analysis to consider weekly durations. We assume that 
the impacts do not vary with time so that these results can be scaled to match the duration of the 
policy.  

Our assumptions for the impact of the NPI portfolios on each of the five sectors are 
summarized in Table 4.2, and the sources behind them are described in detail below. Our 
baseline levels of the impact of an NPI are based on estimates derived from industry associations 
or lobbying groups, transfers from related sectors where little information is available, or related 
literature on previous social-distancing interventions that we use to calibrate a national model. In 
particular, for school closures, we calibrate the output reduction in the education sector to match 
the gross domestic product declines in Smith et al., 2011. In addition to these baseline levels, we 
vary the level of impact around the baseline level to produce low-impact and high-impact 
scenarios for each of the policy scenarios in addition to the baseline. 

Using Smith et al., 2011, and the calibration of the national model, the baseline reduction in 
education output is set to 0.75. We vary this between 0.50 and 0.90 to analyze sensitivity. In 
addition, school closures induce a labor supply reduction for those parents who must now stay 
home to care for their children. According to an analysis by Edwards, Evans, and Schwam, 2020, 
approximately 5.9 percent of households are single parent families with that parent working, 2.7 
percent of which have no in-home options for day care and 1.8 percent of which have a 
nonworking adult who might provide care but also might be part of the vulnerable population. 
Additionally, approximately 17.6 percent of households are two parent families with both parents 
working, 8.5 percent of which are without in-home care options. Thus, we estimate that 
approximately 10 percent of working adults could have long-term absenteeism, resulting in a 10-
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percent reduction of the labor supply. As discussed in Smith et al., 2011, there could be large 
absenteeism stemming from those infected with the disease for those sectors not directly affected 
by social-distancing policies. Additionally, there will be labor supply reduction directly and 
indirectly from COVID-19 resulting from both sickness and caregiving for those who are sick. 
As long as the infection rate remains low, social-distancing policies will likely have a dominant 
effect on the labor supply. In future iterations of this work, we will incorporate feedback between 
an epidemiological model and our model. 

For the restaurants and bars sector, the National Restaurant Association has estimated that 
industry sales are likely to decline by 25 percent (Gangitano, 2020). The New York State 
Restaurant Association has estimated that sales likely declined by 58 percent in the first three 
weeks of March (Romeo, 2020). Using these two estimates, we set the upper bound on output to 
60 percent (a rough average of the two associations) and use 40 percent and 75 percent as our 
low and high impacts. In addition, as we move to stay-at-home orders, we further reduce the 
baseline level to 25 percent and set 10 percent and 50 percent as our lower and upper bounds. 
We map the cancellation of large events to the hospitality industry, which includes hotels, 
amusement parks, casinos, and similar businesses. The American Hotel and Lodging Association 
(AHLA) estimates that roughly 70 percent of its workers will be laid off as a result of COVID-19 
(AHLA, undated). We follow the estimates of the restaurants and bars for the larger hospitality 
sector because the most-extreme estimates match those of the AHLA. 

In a recent survey of the retail sector, NuOrder estimated that retail sales are likely to decline 
by 50 percent as a result of COVID-19. Groceries are part of retail, so our baseline level of 
output for nonessential retail is set to 40 percent with low and high values of 25 percent and 75 
percent, respectively. Again, in the most severe policy, we further decrease this in line with the 
restaurants and hospitality industries (Binlot, 2020).  

For the air transportation sector, we mimic the hospitality assumptions with one exception. 
Air transportation consists of both cargo and passenger traffic. According to Rodrigue, 2020, 
cargo revenue is roughly 25 percent of air transportation revenue. Therefore, we modify the 
hospitality numbers to reflect this by reducing the decrease by 25 percent. Thus, the baseline 
scenario for air transportation is 70 percent with low and high values of 50 percent and 80 
percent, respectively. Additionally, we place a lower bound for air transportation of 30 percent in 
the most extreme case of social distancing. 

Because of the general equilibrium nature of the model, there will be considerable 
reallocation of displaced labor to sectors that are not directly affected by social-distancing 
policies. As we reduce the output of a sector, its labor demand will fall and workers will 
reallocate to sectors that are not constrained by policy. Because factors are supplied inelastically, 
there is no unemployment implied by the model but wages fall—and they fall to a considerable 
extent in the more-extreme scenarios of social distancing, which can be thought of as 
unemployment, to a degree. Given the presumably short-term nature of social-distancing policies 
(most of which likely will be repealed in a matter of months), we would not expect a 
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fundamental restructuring of the economy. Therefore, we limit the increase in output to 50 
percent of the baseline level. 

Table 4.2. Impact of Nonpharmaceutical Intervention Portfolios on Industry Sectors 

Portfolio 
ID Scenario EDUC REST HOSP AIRT NERT 

0 No action 1.00 1.00 1.00 1.00 1.00 

1L Close schools. 0.90 1.00 1.00 1.00 1.00 

1B 0.75 1.00 1.00 1.00 1.00 

1H 0.50 1.00 1.00 1.00 1.00 

2L Close schools, bars, and restaurants; 

and ban large events. 

0.90 0.75 0.95 1.00 1.00 

2B 0.75 0.60 0.75 0.80 1.00 

2H 0.50 0.40 0.60 0.70 1.00 

3L Close schools, bars, and restaurants; 

ban large events; and close 

nonessential businesses. 

0.90 0.75 0.75 0.80 0.75 

3B 0.75 0.60 0.60 0.70 0.40 

3H 0.50 0.40 0.40 0.50 0.25 

4L Close schools, bars, and restaurants; 

ban large events; close nonessential 

businesses; and quarantine 

vulnerable populations (shelter-in-

place). 

0.90 0.50 0.50 0.65 0.75 

4B 0.75 0.25 0.25 0.50 0.40 

4H 0.50 0.10 0.10 0.40 0.25 

5L Close schools, bars, and restaurants; 

ban large events; close nonessential 

businesses; and quarantine everyone 

but essential workers (shelter-in-

place). 

0.90 0.50 0.50 0.50 0.50 

5B 0.75 0.25 0.25 0.35 0.25 

5H 0.50 0.10 0.10 0.30 0.10 

Results 
We first present the national-level results to provide a baseline. Table 4.3 presents the income 

declines separated by household for all the NPI portfolios. To put these raw income losses into 
perspective, we normalize by the baseline income in Table 4.3. Although much of the discussion 
within the popular media has focused on lower-income households, our analysis suggests that 
higher-earning households are affected with a larger proportion of income decline from social-
distancing policies. Although it might seem counterintuitive, this is because of the incorporation 
of labor income and also all sources of income. As we have seen in recent weeks, the Small 
Business Association program to provide forgivable loans has been overprescribed. This 
suggests that the impact of social distancing is affecting not only labor income but also capital 
income, along with those who receive other nonlabor income. Because those who receive 
nonlabor sources of income are directly and indirectly affected by social distancing, their 
incomes are likely to decline substantially. The general equilibrium approach incorporates 
changes in labor income and also nonlabor income that might be substantial portions of value 
added in different sectors. This is also consistent with a Financial Times-Peterson poll that found 
that roughly the same proportion of households reported that 73 percent would experience some 
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income decline because of COVID-19 with between 19 percent and 29 percent experiencing 
significant declines (Fedor and Zhang, 2020). Importantly, none of the effects of the 2020 
Coronavirus Aid, Relief, and Economic Security Act has been incorporated into this analysis. 
The focus is solely on the effects that social distancing could have on the economy without 
federal policy. 
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Table 4.3. Income Declines per Week, by Household Income ($ millions) 

Portfolio ID < 15K 15K–30K 30K–40K 40K–50K 50K–70K 70K–100K 100K–150K 150K–200K > 200K Total 
1L 100 300 400 500 1,300 2,000 2,500 1,500 3,100 11,600 
1B 100 400 500 700 1,700 2,600 3,300 1,900 3,900 15,100 
1H 100 500 700 900 2,200 3,400 4,400 2,500 5,000 19,700 
2L 100 400 500 700 1,800 2,700 3,500 2,000 4,200 16,000 
2B 100 600 800 1,100 2,700 4,200 5,300 3,100 6,300 24,200 
2H 200 800 1,100 1,500 3,700 5,700 7,300 4,200 8,500 32,900 
3L 100 600 800 1,000 2,500 3,900 5,000 2,900 6,000 22,600 
3B 200 900 1,200 1,600 3,900 6,000 7,700 4,400 9,100 34,800 
3H 200 1,100 1,500 2,000 5,000 7,700 9,900 5,700 11,700 44,900 
4L 200 700 1,000 1,300 3,200 5,000 6,400 3,700 7,700 29,100 
4B 200 1,100 1,400 1,900 4,800 7,300 9,500 5,500 11,400 43,100 
4H 300 1,300 1,700 2,300 5,800 8,800 11,400 6,600 13,900 52,100 
5L 200 900 1,200 1,500 3,800 5,900 7,600 4,400 9,100 34,600 
5B 300 1,200 1,600 2,200 5,500 8,400 10,900 6,300 13,100 49,500 
5H 300 1,600 2,100 2,800 7,100 10,900 14,000 8,100 17,200 64,200 
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Table 4.4. Percentage Income Declines, by Household Income 

Portfolio ID < 15K 15K–30K 30K–40K 40K–50K 50K–70K 70K–100K 100K–150K 150K–200K > 200K Average 
1L 0.4 1.2 2.2 3.2 4 4.5 5.3 6 9.8 4.6 
1B 0.6 1.6 2.9 4.3 5.3 5.9 6.9 7.9 12.5 6 
1H 0.7 2.1 3.9 5.6 6.9 7.8 9.2 10.4 16 7.9 
2L 0.6 1.7 3.1 4.5 5.6 6.2 7.3 8.3 13.5 6.4 
2B 0.9 2.6 4.7 6.8 8.4 9.4 11.1 12.6 20.1 9.7 
2H 1.2 3.5 6.4 9.3 11.5 12.8 15.2 17.2 27.1 13.1 
3L 0.8 2.4 4.4 6.3 7.9 8.7 10.4 11.8 19 9 
3B 1.3 3.7 6.7 9.8 12.1 13.5 16 18.2 29 13.9 
3H 1.7 4.7 8.7 12.7 15.6 17.4 20.7 23.5 37.4 17.9 
4L 1.1 3.1 5.6 8.2 10.1 11.2 13.3 15.1 24.5 11.6 
4B 1.6 4.5 8.3 12.1 14.9 16.6 19.7 22.5 36.4 17.2 
4H 1.9 5.5 10 14.5 18 20 23.7 27.1 44.4 20.8 
5L 1.3 3.6 6.7 9.7 12 13.3 15.8 18 29.1 13.8 
5B 1.8 5.2 9.6 13.9 17.2 19.1 22.7 25.8 41.8 19.8 
5H 2.4 6.7 12.4 17.9 22.2 24.6 29.3 33.4 54.7 25.6 
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Our second set of results focuses on the distribution of impacts across states. Figure 4.1 
shows the distribution of aggregate percentage losses across all states for the optimistic school-
closure scenario (1L). This scenario incorporates low levels of impacts in the education sector 
but decreases the labor supply by 10 percent. These losses are largest for New York, 
Connecticut, Massachusetts, and California with most states between 4 percent and 5 percent. 
This could be a reflection of higher per capita incomes stemming through the labor supply 
reductions.  

Figure 4.1. Aggregate Income Loss as a Percentage of Baseline Income, by State for the 
Optimistic School-Closure Scenario (1L) 

 
At the opposite end of the spectrum, Figure 4.2 provides the distribution for the pessimistic 

stay-at-home order for the entire population. Most of the larger income losses are concentrated in 
the Midwest: Iowa, Wisconsin, Indiana, Nebraska, and Ohio. The effects of stay-at-home orders 
are in final-demand sectors, which suggests that these states produce relatively high amounts of 
final-demand goods and that states like Virginia produce more intermediate goods and services 
that are not as affected by stay-at-home orders. By final demand, we mean not only personal 
consumption but also consumption by all institutions within the model, including federal, state, 
and local governments. We show the full set of results by each state in Table A.1 in the 
appendix. 
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Figure 4.2. Aggregate Income Loss as a Percentage of Baseline Income, by State for the 
Pessimistic Stay-at-Home Order for the Full Population (5H) 

 

Discussion 
This analysis provides an initial assessment of the possible short-term economy-wide effects 

of social distancing. We recalibrate and modify an existing model to quickly implement 
economy-wide models on short time horizons. These results should be taken as rough order-of-
magnitude estimates meant to help inform decisionmakers in accordance with the timeline of the 
crisis. Considerable effort would be required to further modify the model to better incorporate 
nuances of the economy. This presents an important trade-off, and we believe that the current 
model provides important information now, when it is needed. Additional modifications and 
nuances can be added over time.  

Limitations 

The model is subject to a few limitations. One key challenge is that resilience strategies and 
coping mechanisms might be available to some households but not others. For example, 
households with more-flexible work schedules and the availability of telework would mean 
smaller labor supply impacts. Thus, we might be overestimating the impacts of these social-
distancing measures, but we think that the choice of sectors affected by these policies might be 
understated. For example, we have considered only nonessential retail being affected by these 
policies. The difficulty with expanding the definition of nonessential businesses is twofold. First, 
there is no clear baseline definition of what is nonessential. Some governors have identified 
specific retail sectors as nonessential, but, to our knowledge, no one has specified which 
manufacturing or service industries are nonessential. Second, this lack of specificity creates a 
problem of compliance and enforcement. Retail has a public-facing front; other industries are not 
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nearly as public and might continue operations even in the face of a nonessential business 
closure. 

Another key challenges is that we have not factored in the larger macroeconomic 
environment in which the models are operating. For example, we do not consider the decline in 
oil prices. Importantly, we have not included the demand-side shocks that are likely to occur as a 
result of people staying home. These shocks are different than the reduction in output that we 
have modeled and are associated with household behavior as a result of social-distancing 
policies.  

There have been considerable federal efforts to mitigate the economic impacts of social 
distancing that need to be examined. The longer-term economic outcomes have not been 
considered but deserve attention. For example, we are assuming that the previous baseline would 
be achieved once these policies are removed. There might be substantial change in the economy 
because of this event that we have not considered. Additionally, there are dynamic effects of 
longer-term social distancing that might not be linear, as we have assumed. For example, 
business closures resulting from bankruptcy have not been considered, and these are likely to 
increase with the duration of these policies. Similarly, households might be able to rebound 
quickly from short disruptions but are likely to take much longer to recover if these policies are 
in effect for longer durations. These nonlinear impacts will be different depending on the 
resilience mechanisms available to households, and those mechanisms might vary by household 
income because of savings and paid time off.  

Despite these limitations, we believe that the model provides important and timely 
information. Our aim was to provide estimates of how the economic costs are distributed across 
states and across alternative policies so that decisionmakers charged with imposing and 
removing social-distancing policies have better information about the economic costs and 
benefits of these policies.  
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5. Qualitative Assessment of Nonpharmaceutical Interventions 

The epidemiological model and the economic model focus on a set of social-distancing NPI 
portfolios. In this qualitative assessment, we explore a broader variety of NPIs and an expanded 
set of policy considerations. The qualitative assessment of NPIs will be useful for understanding 
the strengths and weaknesses of different interventions and the trade-offs between them.  

The three primary steps in this analysis were to (1) identify a relevant set of NPIs to include, 
(2) select a set of criteria on which to assess each NPI, and (3) synthesize available information 
to develop an assessment for each NPI-criterion combination. 

To carry out this process, we first conducted a review of the literature on NPIs to capture the 
variety of health policies associated with disease outbreaks characterized by a novel virus, high 
contagiousness, and person-to-person direct transmitted respiratory diseases. We gathered data 
from the following five sources:  

1. peer-reviewed scientific articles on NPIs 
2. historical data on NPIs applied in the United States during past epidemics 
3. multilateral, national, and local pandemic preparedness planning technical reports and 

white papers 
4. international government announcements and records on COVID-19 
5. global media reports on COVID-19. 
Given the short time frame and the evolving nature of information available on COVID-19, 

we designed the review so that about half of the data would come from scientific and historical 
review papers and half would come from current reports and technical guides.  

The review was guided by Thomas and Harden’s 2008 framework for thematic synthesis of 
qualitative research evidence. We undertook the literature search using various databases, 
including PubMed, JSTOR, and Google Scholar. In addition, we conducted broad-based searches 
using Google. We used Boolean connectors, AND/OR, to combine search terms; for example, 
(NPI common name1)* OR (NPI common name 2)*AND H1N1. We chose to exclude opinion 
pieces, editorials, conference proceedings, theses, and any documents not published in English. 
The peer-reviewed studies we identified could be categorized into four types: modeling studies, 
systematic reviews, qualitative studies, and mixed-method studies.  

NPIs focus on changing the physical and social environments where disease transmission 
happens. Using the literature, we categorized NPIs into the following three broad types:  

1. individual and public behavioral changes; for example, the type of behaviors promoted 
by the social group or government agencies to help reduce disease transmission, 
including frequent hand-washing, wearing face masks, and the disinfection of public 
spaces 
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2. policies to aid disease isolation by identifying and isolating the suspected cases during an 
epidemic, including symptomatic surveillance, temperature screening, testing, and case 
tracing 

3. policies on social distancing to reduce contact mixing, including school closures, large 
gathering bans, nonessential business closures, and shelter-at-home quarantine.  

We adapted a set of criteria for assessing the extent to which an NPI meets its intended goal. 
The assessment tool was adapted from a RAND assessment framework that was developed in 
response to the Ebola crisis in 2014–2015 (Chamberlin, Efron, and Moore, 2015). The tool 
includes criteria that were critical for policy decisionmaking and was designed to answer many 
of the questions raised in public debates. In Table 5.1, we present the criteria, their definitions, 
and the questions considered in their evaluation. 

Table 5.1. Evaluation Criteria and How They Are Applied 

Criteria Definition Questions Considered in Evaluation Color Coding 
Barriers to 
implementation 

The ease with 
which the 
proposed 
intervention can 
be implemented 
in terms of 
technical 
complexity, 
logistics, and 
resources 

• Does the agency responsible for implementation have 
the needed authority to do so? 

• Are there mechanisms for coordination and partnership 
between agencies and across different levels of 
government? 

• Does the agency have the resources to implement the 
proposed policy in terms of staff, skills, financial 
resources, training, expertise, and so on? 

• Are the facilities, equipment, personnel, and other 
supports available for the proposed intervention? 

• Is the intervention legal under current law, or will 
statutes have to be amended or enacted? 

• Has the intervention been implemented frequently?  

Green: low barrier 
Yellow: moderate 
barrier 
Red: high barrier 

Efficacy Whether an 
intervention 
achieves its 
intended goal 
under the best 
possible 
operational 
conditions 

• How well does this intervention achieve its goals? 
• How much evidence do we have for the positive 

outcome(s) generated by this intervention? 
• If a specific technology is required to implement this 

intervention, does it exist and is it readily available? 
• Is it effective in reducing contact mix? 
• Does it help infected patients get health care? 
• Does it help reduce new cases? 

 

Cost to 
implement 

Cost to the 
government and 
stakeholders to 
implement the 
interventions 

• What are the direct and indirect costs to implement the 
intervention? Are there any intangible costs—for 
example, damage to reputation, loss of credibility and 
trust? 

• What are the one-time fixed costs—new capital 
expenditures, equipment, training, and so on—that are 
required for executing the intervention? 

• What are the operations and maintenance costs 
(ongoing costs)? 

• What are the opportunity costs (other things that could 
have been done instead with the same resources)? 

Green: inexpensive  
Yellow: moderately 
expensive  
Red: very expensive 

Impact on equity The degree to 
which the 
implementation or 
effect of the 

• Is an intervention likely to be discriminatory? 
• Which groups are likely to be burdened by the 

intervention? 
• Which groups are likely to benefit most and least from 

Green: little impact 
Yellow: moderate 
impact 
Red: severe impact  
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Criteria Definition Questions Considered in Evaluation Color Coding 

intervention is 
distributed fairly 
across the 
population, the 
impact on the 
low-income 
population 

the intervention? 
• How might the intervention change the distribution of 

burden and benefits in society? 

Political barriers The extent to 
which the 
intervention will 
be acceptable to 
relevant powerful 
groups, 
decisionmakers, 
legislators, and 
administrators  

• Is the proposed intervention acceptable to 
policymakers, government decisionmakers, legislators, 
and other relevant stakeholders? 

Green: low barrier 
Yellow: moderate 
barrier 
Red: high barrier 

Social and 
cultural barriers 

The extent to 
which the 
intervention will 
be acceptable to 
relevant private 
stakeholders, 
citizens, 
communities, 
unions, or others 

• Is the proposed intervention acceptable to the general 
public, community stakeholders, and other relevant 
groups? 

• Is the intervention aligned with the values of 
subpopulations in the community? 

• Will the intervention meet the real or perceived needs of 
the target group, the public, and other relevant groups? 

Green: low barrier 
Yellow: moderate 
barrier 
Red: high barrier 

Economic cost Whether the 
intervention 
affects market 
supply and 
demand, 
employment, and 
potential 
business closure 

• What are the effects on market supply and demand? 
• What are the effects on employment? 
• What are the costs to corporations and individuals? 

Green: low cost 
Yellow: moderate 
cost 
Red: high cost 

Social well-
being  

The extent to 
which the 
intervention 
causes isolation, 
domestic 
violence, stress, 
and anxiety 

• How does the intervention affect the isolation, stresses, 
and anxiety levels of the affected population? 

• What are the effects on domestic dynamics, such as 
domestic violence?  

Green: low impact 
Yellow: moderate 
impact 
Red: severe impact 

When to start 
(trigger) and 
when to end 
(turn off) 

Relative time for 
intervention to be 
implemented and 
to produce 
desired results 

• How long will an intervention take to achieve 
predetermined milestones and eventually its ultimate 
goal? 

• When should the intervention be triggered?  
• When should the intervention be lifted?  

N/A, qualitative 
coding is applied 

Risk of 
unintended 
negative 
outcomes 

Likelihood of 
intervention to 
have additional, 
unintended, and 
negative effects 
outside the stated 
goals 

• Will the allocation of resources toward the proposed 
intervention limit the agency’s ability to deliver standard 
services or limit its readiness to face other 
emergencies? 

• Will the implementation of the proposed intervention 
carry third-party risks (to other countries or 
communities)? 

• Will the intervention alter internal or external 
relationships or processes? 

N/A, qualitative 
coding is applied  
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Figure 5.1 shows the section of the web tool where we assess each NPI on each criterion. The 
color-coded scorecard approach depicts the performance of an intervention in relation to each 
criterion. Our assessment of each NPI on each criterion is generated by a guided synthesis of the 
literature. The colors vary from red, which represents poor performance or severe negative trade-
offs, to green, which represents performance close to expectations with the least-negative 
consequences. For comparison across interventions, the scorecard will align the performance 
judgments for each criterion and each intervention. This allows policymakers to systematically 
assess different interventions across all of the criteria and understand the trade-offs between 
them. For example, suppose a policymaker is comparing two interventions. The first one is not 
very costly to implement but hits low-income populations particularly hard and so does not score 
well on equity. The second intervention might cost a bit more, but the negative economic effects 
are likely more-equitably distributed across the population. In this hypothetical example, neither 
intervention is dominant (i.e., better on both criteria considered). Rather, there are trade-offs: 
One is better on cost, but the other is better on equity. The tool lays out these trade-offs for 
policymakers so that they can make informed decisions. 
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Figure 5.1. Color-Coded Intervention Assessment in the Tool 

 

Detailed Description of Nonpharmaceutical Interventions 
In this section, we provide detailed descriptions of and considerations for each NPI. The 

sources used to inform the descriptions and assessments of the NPIs are provided in Appendix B. 

School Closures 

School closing is one of the common NPIs used as an epidemic mitigating strategy for 
influenza pandemics. School systems represent an important element in flu pandemic 
preparedness for several reasons:  

1. Children easily transmit infectious diseases to one another because of the high-contact 
context. 
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2. Because of the large number of students in one place, in close proximity, and with less-
than-acceptable hygiene practices, the students, teachers, and staff would be highly 
susceptible to a novel virus. 

3. Studies showed that interventions targeting school-age children against influenza reduced 
mortality of pneumonia in the general population. 

4. The trigger for school closing could be when widespread community transmissions are 
evident, when children or their families report cases of acute respiratory illness, or when 
the novel virus has high infectiveness.  

Evidence of the efficacy of school closures as NPIs in a pandemic mostly comes from 
qualitative reviews and modeling studies of the 1918 H1N1 and 2009 H1N1 influenza 
pandemics. Early implementation of school closures with a medium or long duration (four to 
eight weeks)—and when combined with bans on large crowds and the closure of businesses—
can effectively reduce influenza transmissions and protect children, teachers, and their families 
and communities.  

The following caveats related to school closures during a pandemic are worth considering:  

• for COVID-19 specifically, children appear to be disproportionately less affected, and 
their transmission potential of COVID-19 versus influenza is still not well understood 

• school closing usually is associated with at least half of the working adult population 
staying at home  

• a parent at home might mean a shortage of health care workers  
• a parent at home will disproportionally affect those who work in service and low-income 

jobs  
• when school is closed, social mixing might happen more in the community than at school 

if no crowd ban is issued  
• children might have more contact with older adults who are more susceptible to COVID-

19  
• homeless children and low-income children need school meals and other physical and 

mental health support  
• children without access to laptops and high-speed internet will have difficulty keeping up 

with online teaching 
• long-term school closing can cause major interruptions in students’ learning and in 

assessments for qualification. Social isolation caused by school closing also can increase 
anxiety, depression, and other mental health problems among children and their families.  

Travel Restrictions 

Travel restrictions are immediate means by which to slow pandemic growth and reduce the 
number of imported cases. Travel restrictions can include temporary border closures, 
cancellations of flights, visa bans, and mandatory 14-day self-quarantines. Often, travel 
restrictions—especially at points of entry—have intuitive appeal to policymakers because they 
demonstrate that a tangible attempt is being made to prevent the ingress of a novel virus or 
onward spread. However, the relevant data that are available seem to indicate that restrictions on 
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travel would have a limited impact on containment or even on the slowing of transmission, 
especially when community transmission is widespread and when travel restrictions are not 
combined with other NPIs, such as screening, testing, monitoring of self-quarantining.  

The trigger for travel restrictions could be when imported cases dominate the disease 
transmission, either at the very beginning of the epidemic (a few cases or a few clusters) or when 
community transmission is well controlled and officials face challenges of a new wave of 
imported cases. Travel restrictions had no beneficial effect on attack rates if the level of strain 
transmissibility was moderate or high (i.e., when R0 > 2.5). Travel restrictions will work best 
when the travel ban is extensive (e.g., 99 percent).  

Travel restrictions usually require significant amounts of additional personnel and funding to 
support reinforcement, screening, testing, and monitoring. Some countries (e.g., Taiwan and 
Hong Kong) combine travel records with the health care data of their citizens and have achieved 
sufficient case tracing and traveler quarantine monitoring.  

The unintended negative outcomes for travel bans are  

• interrupting trade and international business 
• interrupting the transportation of aid workers and health care supplies to crisis areas 
• providing a false sense of security 
• allowing political bias to influence the NPIs 
• stranding migrant workers and international students without support. 

Nonessential Business Closures 

Nonessential business closures means temporarily ceasing all nonessential business activities. 
It is a major NPI that is used as an epidemic-mitigating strategy for influenza pandemics by 
different U.S. states. Closing businesses at such a scale is unprecedented in past policy responses 
to epidemics. Closing nonessential businesses is important for stopping epidemic transmission 
because it creates social distancing by decreasing contact time, duration, and density.  

Given the unprecedented scale of nonessential business closing, our evidence for its efficacy 
is rather limited. Using the experience of China in combating COVID-19, a combination of a 
draconian lockdown of Wuhan City and Hubei Province, strict control of people’s movement, 
and closing of businesses seem to be effective in flattening the curve and controlling the spread 
of COVID-19. Research on the 1918 pandemic suggests that cities in which multiple 
interventions were implemented at an early phase also showed a trend toward lower cumulative 
mortality.  

The following caveats of the nonessential business closure approach are worth considering:  

• Significant loss is likely to be incurred on business owners, who are most burdened by 
this policy. The interventions reduce revenue, making it difficult to keep employees on 
the payroll. Business owners also would incur loss in terms of the cost of purchased 
materials, lagged sale of manufactured goods, and rent and utilities costs.  
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• Continuing the closure of nonessential businesses would lead to rising unemployment in 
the informal sector. Prolonged business closure also will hurt the supply chain, disrupting 
future production.  

• Small businesses account for nearly 50 percent of the U.S. economy (U.S. Small 
Business Administration, 2019). Macroeconomic performance will be severely affected 
by the close of nonessential businesses.  

• China’s National Bureau of Statistics predicted that gross domestic product would grow 
by 3.5 percent in the first quarter, and industrial output fell 13.5 percent through 
February. The services index fell 13 percent. According to the Economist, 2020, in the 
United States and Europe, gross domestic product could drop by 5 percent to 10 percent 
year-on-year, perhaps more.  

Bar and Restaurant Closures 

The need to socially distance has resulted in restaurant and bar closures. Across the United 
States, bars and restaurants have been told to shut their doors to the public to slow the spread of 
COVID-19. The intervention refers to the shut-down of bars, nightclubs, and wineries; and the 
closure of dine-in services, only allowing for online ordering and take-away services. This 
intervention has been adopted by more than 30 countries and regions around the world. It 
reduces transmission by reducing close contact in dining and drinking activities, thus achieving 
more-successful social distancing.  

It is difficult to evaluate the effectiveness of specific measures to control disease spread in 
epidemiologic terms because of the complex relationships between individuals and groups and 
the individual biological differences in response to influenza. The results of a recent modeling 
study of cases of COVID-19 in the United Kingdom noted that “stopping mass gatherings is 
predicted to have relatively little impact . . . because the contact-time at such events is relatively 
small compared to the time spent at home, in schools or workplaces and in other community 
locations such as bars and restaurants” (Ferguson et al., 2020, p. 8). 

The following caveats related to the closure of restaurants and bars are worth considering:  

• According to research by the Urban Institute, in 2017, more than 7.5 million adults 
worked in food service and preparation occupations (Gangopadhyaya and Waxman, 
2020). 

• Few occupations have experienced the negative effects of containment more abruptly and 
dramatically than food service and preparation workers—from waiters and bartenders to 
dishwashers and cooks—who are already economically disadvantaged by their low 
earnings and lack of health insurance coverage. They risk falling into dire economic 
circumstances unless policies are implemented swiftly that allow families to meet their 
basic needs.  

• Mandatory restaurant closures might have cascading effects because of reduced demand 
for linens, laundry services, equipment rentals, food, and workers. This could lead to 
widespread problems, such as inabilities to pay rent on property and equipment or 
inability to service corporate debt. The end result might be waves of business collapse 
across certain industries. 
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• States are burdened differently by the bar and restaurant closure intervention. Nationally, 
these workers represent 5.7 percent of the private-sector workforce over the age of 18, 
ranging from 4.3 percent in Nebraska to 11.8 percent in Hawaii. Besides Hawaii, states 
with higher percentages of workers in these categories include Nevada (10.8 percent), 
New Mexico (8.0 percent), Florida (6.9 percent), Wyoming (6.9 percent), Rhode Island 
(6.8 percent), and Louisiana (6.7 percent). Of these states, Hawaii, Nevada, and 
Louisiana have economies that depend heavily on tourism; this factor could make them 
more vulnerable to a severe economic downturn in the wake of the pandemic.  

Large-Gathering Bans 

Large events and mass gatherings can contribute to the spread of COVID-19 in the United 
States via travelers who attend these events and introduce the virus into new communities. 
Examples of large events and mass gatherings include conferences, festivals, parades, concerts, 
sporting events, and weddings. These events can be planned by organizations and communities 
or by individuals. In the United States, implementation of bans on large gatherings can be 
divided into the following categories: all gatherings prohibited; more than ten people gathering 
prohibited; 50 or more gathering are prohibited; other; and no action. This intervention has been 
adopted by more than 70 countries and regions. It has been applied in response to past global 
epidemics, including Severe Acute Respiratory Syndrome (SARS), H1N1, and Middle East 
Respiratory Syndrome (MERS).  

Evidence suggests that mass gatherings shortly before an epidemic peak could increase the 
peak height by about 10 percent, and avoidance of mass gatherings might be beneficial. Bans on 
public gatherings in combination with other interventions can reduce death rates, as can bans on 
public gathering that are implemented for a longer duration.  

The following caveats related to bans on large gatherings are worth considering:  

• Decisionmakers need to consider the overall number of attendees, the number of people 
attending who are at greater risk of more-serious illness after contracting COVID-19 
(such as older adults with preexisting conditions), and the density of attendees within a 
confined area (the spread from person to person happens most frequently among close 
contacts within six feet).  

• Decisionmakers should consider the potential economic impact on participants, attendees, 
staff, and the larger community. 

• The state bans on large gatherings will hit many local business owners hard in terms of 
the cost incurred from organizing large events and opportunity costs for investing the 
money to organize other activities. It will also hit the sponsors and volunteers for such 
events. 

• Implementing such measures would have seriously disruptive consequences for a 
community if they are extended through the eight-week period of an epidemic in a 
municipal area. 

• There is reported local resistance to large crowd bans. For example, hundreds of 
worshippers attended services at a Louisiana church on a Sunday in March, flouting a ban 
on large gatherings, angering neighbors, and seemingly turning a deaf ear to their 
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governor, who warned that hospitals could soon be overwhelmed with new cases of 
COVID-19 (Hennessy-Fiske, 2020).  

Quarantine or Stay-at-Home Orders for All 

The mandatory quarantine and stay-at-home orders aim to separate a person or group of 
people who have been exposed to a contagious disease but have not developed symptoms from 
those who have not been exposed to prevent the possible spread of the disease. Quarantine 
usually means limiting the movement of the healthy and it is different from the practice of 
isolation, which is a health care term that means keeping people who are infected with a 
contagious illness away from those who are not infected. 

Scientific evidence shows high efficacy of quarantine as an NPI in pandemics. Quarantine 
helps case detection by raising awareness, mitigates the transmission of highly infectious 
diseases by reducing people’s contacts, and decreases the opportunity that asymptomatic or 
mildly infected cases mix in a community. 

The following caveats of mandatory quarantine and stay-at-home orders are worth 
considering:  

• Quarantining in a densely populated environment or with potentially infected people 
(e.g., returned travelers, people with symptoms who cannot be isolated at clinics) can 
increase infection transmission chances. 

• Quarantine compliance is crucial for the quarantine orders to be effective. Enforcement 
of compliance can be difficult.  

• For the manufacturing sector, the labor supply will drop and the supply chain will be 
interrupted. The overall economy will be harmed because of lower productivity. 

• There will be severe economic losses for businesses and people who work in service 
sectors, such as travel, hospitality, retail, and restaurants.  

• Those who do not have internet service will suffer from loss in work and in education. 
• The implementation burden to ensure compliance is almost entirely on local authorities 

and local police forces. 
• Long periods of quarantine and social isolation might cause mental health issues. People 

also will experience logistical challenges, and there is an increased risk to those living in 
restricted zones.  

• There are potential political barriers because public justification is hard to achieve during 
the early stages. 

Quarantine for Vulnerable Populations 

COVID-19 is a new disease, and there is limited information regarding risk factors for severe 
disease. According to currently available information and clinical expertise, older adults and 
people of any age who have serious underlying medical conditions might be at higher risk for 
severe illness from COVID-19. Some states, such as Oklahoma and Washington, issued 
mandatory quarantine orders for their vulnerable populations. 
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Although evidence for the efficacy of this NPI is limited, mandatory quarantine and stay-at-
home orders for vulnerable populations should have similar efficacy to general quarantine 
orders. 

The following caveats related to mandatory quarantine orders and stay-at-home orders for 
vulnerable populations are worth considering:  

• Vulnerable populations require extra care and resources, which they might not be able to
provide themselves.

• The government needs to provide extra resources to enable the vulnerable populations to
be quarantined.

• Vulnerable populations might face more logistical challenges and experience higher
mental stress under the quarantine order compared with the general population.

Testing and Isolation 

Massive testing is essential in the COVID-19 containment and mitigation plans because it 
can help identify the infected; immune; and the rest, who are healthy but suspectable to the 
disease. With aggressive testing and patient isolation, government can achieve proportionality of 
response by applying quarantine interventions only to the infected (e.g., the source of disease 
transmission) and allowing the healthy to continue with economic and social activities. Without a 
sufficient and effective testing strategy, a broad quarantine will have to be applied to the whole 
population for an indefinite period of time and is likely to cause negative economic and social 
consequences. Testing also can facilitate regional disease surveillance for resource and logistic 
planning and link the infected to health care.  

Testing for COVID-19 mainly includes polymerase chain reaction (PCR) tests and 
serological tests, which we describe further below: 

• PCR tests identify the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)
RNA in patients’ respiratory specimens. All of these tests are Real-Time Reverse
Transcriptase (RT)-PCR Diagnostic Panels that can provide results in four to six hours.
These tests should be used as evidence of active infection for those who are symptomatic,
those with reasons to presume exposure (e.g., frontline workers), and for symptomatic
and asymptomatic contacts of confirmed cases. Recently, innovative fast-response
antigen molecular tests (e.g., Bosch, Germany, 2.5 hours) have the potential to help
simplify the testing process and scale up the testing en-masse.

• Serological (antibody) tests identify people who have developed an immune response to
the virus. Presence of the antibodies in blood can be detected one to two weeks after the 
start of the infection. The enzyme-linked immunoassay (ELIZA) blood test is lab-based 
(one to five hours), whereas the rapid diagnostic test (RDT) using lateral flow assay use 
finger prick can be used at point of care (results in ten to 30 minutes).

The following caveats related to testing are worth considering: 
• Implementation of testing requires numerous factors, including sufficient production of

the testing kits; laboratory capacities; sufficient swabs, testing tubes, and transportation 
equipment supplies; access to testing (e.g., testing at the clinic, community settings, 
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home); availability of personnel conducting the test; and protection gear for people 
conducting the tests. 

• A high rate of false negative results of the SARS-CoV-2 PCR tests could result in 
individuals believing that they are not infected, but they still could transmit the virus to 
others. Current estimates of the false negative rate of PCR tests are 15 percent to 30 
percent.  

• The presence of antibodies might not indicate full protection from reinfection, and the 
duration of the immunity is uncertain. Validity data on serological tests are unavailable 
now. Those who test negative might be in the early days of infections.  

• People might get exposed to disease while trying to get tested for COVID-19. Health care 
providers also might have higher exposure to infected people. 

• The lack of accessibility of testing for certain populations (e.g., people experiencing 
homelessness, people with no insurance coverage) brings issues of equality. 
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6. How to Use the COVID-19 Decision Support Tool 

The web tool provides a simplified summary of the output of the economic and 
epidemiological models to allow users to estimate the effects of changing the NPI portfolio in 
effect for a selected U.S. state at a selected date. The tool also provides a snapshot of data about 
the current impact of the COVID-19 pandemic in the selected state.  

Section 1: Current Impact of COVID-19 in Selected Location 

Select a state from a drop-down menu to view the current impact data for that state. 

Section 2: When to Stop and Start Interventions for COVID-19 
Choose a new intervention level, or no intervention, and a start date for the selected change 

to review the projected epidemiological and economic effects. The user can choose an 
intervention level from the following escalating scale, with each level adding more-widespread 
restrictions: 

• Level 0: No interventions, “new normal” activity levels. 
• Level 1: Close schools. 
• Level 2: Close schools, bars, and restaurants; and ban large events. 
• Level 3: Close schools, bars, and restaurants; ban large events; and close nonessential 

businesses. 
• Level 4: Close schools, bars, and restaurants; ban large events; close nonessential 

businesses; and shelter at home for the most vulnerable. 
• Level 5: Close schools, bars, and restaurants; ban large events; close nonessential 

businesses; and shelter at home for everyone but essential workers. 
 
Users can view a chart of the projected impact of the change in intervention level on health 

and economic indicators compared with the current intervention level in that state with no 
change. 

Section 3: Qualitative Guidelines for COVID-19 Interventions 

This section provides qualitative information about each NPI individually, including 
interventions not shown in the five modeled levels. The user can select one of the following 
interventions: 

• close schools 
• restrict travel 
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• close bars and restaurants 
• close nonessential businesses 
• ban large gatherings 
• issue shelter-at-home orders for vulnerable population 
• issue shelter-at-home orders for all 
• increase clinical testing and self-quarantine the infected 
• promote mask-wearing in public 
• isolate patients in separate facilities. 

 
For the selected intervention, information is shown on the efficacy of the measure, when to 

start and stop, and the main negative impacts to consider. 
A comparison table provides a high-level view of other criteria that policymakers might need 

to consider for each intervention. Clicking on an intervention name provides more information 
for each of the following criteria, for each intervention: 

• barriers to implementation 
• cost of implementation 
• economic cost 
• impact on equity 
• political barriers 
• cultural and social barriers 
• impact on social well-being. 
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7. Next Steps 

The objective of this tool is to provide information to support decisionmaking during the 
COVID-19 pandemic. We have developed a tool based on sophisticated epidemiological and 
economic modeling and a comprehensive qualitative assessment of the literature on NPIs. We 
have used the best data available to inform these analyses. As the pandemic evolves, however, 
new information will become available, and we intend to continue refining the models, 
incorporating new parameter estimates, and building in new features. We also intend to build out 
the web tool, incorporating additional interactivity that will allow the user more choices in terms 
of NPIs, start and stop dates for NPIs, and values for the input parameters. 
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Appendix A. Case Fatality Rates and Percentage Income Losses 

Figure A.1 shows case fatality rates, by countries other than the United States. 

Figure A.1. Case Fatality Rate, by Country 
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Table A.1 shows the percentage income losses under social-distancing portfolios, by U.S. 
state. 

Table A.1. Percentage Losses in Income, by State Under Social-Distancing Portfolios 

 1L 1B 1H 2L 2B 2H 3L 3B 3H 4L 4B 4H 5L 5B 5H 
National 4.6 6.0 7.9 6.4 9.7 13.1 9.0 13.9 17.9 11.6 17.2 20.8 13.8 19.8 25.6 
Alabama 4.2 4.4 4.9 4.5 5.3 6.7 4.9 6.4 9.6 5.5 8.4 11.2 6.7 11.1 22.2 

Alaska 4.6 5.4 6.7 5.1 6.5 8.5 5.8 7.8 9.8 6.6 9.2 9.9 7.4 9.5 9.0 
Arizona 4.6 4.9 5.4 5.0 5.8 6.9 5.5 6.6 9.8 6.1 8.6 11.9 6.6 10.2 16.4 

Arkansas 4.1 4.3 4.6 4.4 5.1 6.5 4.8 6.2 10.1 5.4 8.8 16.6 6.5 12.8 29.1 
California 6.4 7.0 7.8 6.9 8.1 9.8 7.5 9.5 12.8 8.4 12.1 15.5 9.4 13.9 21.3 
Colorado 5.0 5.5 6.2 5.6 6.7 8.3 6.3 8.0 11.3 7.2 11.0 16.5 7.9 13.0 21.4 

Connecticut 7.1 7.3 7.7 7.3 8.0 9.3 7.6 8.8 11.7 8.2 11.1 17.4 9.1 13.5 26.4 
Delaware 5.1 5.4 5.8 5.5 6.3 7.7 5.9 7.4 10.8 6.6 10.5 19.2 7.7 12.6 23.7 
Florida 4.5 4.9 5.4 5.2 6.5 8.1 6.3 8.7 13.0 7.5 12.7 16.9 8.5 14.2 20.8 

Georgia 4.6 5.1 5.7 5.1 6.1 7.6 5.7 7.6 10.3 6.5 10.4 15.4 7.4 11.4 18.8 
Hawaii 4.8 5.6 6.7 6.0 8.4 10.8 8.0 11.0 13.7 9.9 13.7 14.6 11.1 13.9 13.6 

Idaho 4.3 4.5 4.8 4.6 5.2 6.4 4.9 6.0 9.2 5.4 8.1 15.2 6.3 11.8 29.4 
Illinois 5.7 6.1 6.8 6.1 7.1 8.8 6.6 8.5 11.4 7.6 11.7 23.1 8.3 13.1 26.9 
Indiana 4.1 4.5 5.1 4.6 5.5 7.3 5.2 7.4 12.3 6.0 10.6 23.5 7.6 15.3 45.1 

Iowa 4.4 4.8 5.4 4.8 5.7 7.6 5.3 7.5 13.4 6.0 10.7 24.5 7.9 16.9 43.1 
Kansas 4.7 5.0 5.4 5.1 5.9 7.6 5.5 7.2 12.3 6.1 10.4 20.0 7.8 15.2 36.9 
Kentucky 4.6 4.8 5.2 4.9 5.7 7.0 5.4 7.0 9.9 6.0 8.7 11.5 7.1 11.0 21.5 

Louisiana 3.5 4.0 4.7 3.9 5.0 6.7 4.6 7.0 11.0 5.4 9.4 13.2 6.9 12.5 24.7 
Maine 4.7 5.0 5.4 5.1 5.8 7.2 5.4 6.9 11.1 6.0 10.1 18.8 7.3 13.5 28.8 

Maryland 4.4 5.1 6.1 5.0 6.3 8.3 5.7 8.0 12.1 6.8 11.5 16.4 7.8 13.1 17.7 
Massachusetts 7.4 7.9 8.7 7.8 8.9 10.7 8.4 10.3 13.9 9.3 13.8 22.7 10.3 15.8 28.8 
Michigan 4.8 5.1 5.5 5.2 5.9 7.4 5.6 7.2 10.4 6.3 10.0 25.8 7.2 12.3 33.3 

Minnesota 5.7 6.0 6.5 6.1 6.8 8.2 6.4 7.9 10.8 7.2 11.0 28.2 7.9 12.7 33.1 
Mississippi 3.5 3.8 4.2 3.8 4.5 5.8 4.1 5.5 9.1 4.6 7.7 12.6 5.7 11.1 23.1 
Missouri 4.4 4.8 5.3 4.8 5.7 7.4 5.3 7.3 11.3 6.2 10.2 19.8 7.5 13.8 33.3 

Montana 3.7 4.1 4.7 4.2 5.1 6.7 4.8 6.9 12.1 5.6 11.2 21.5 6.8 14.4 28.7 
Nebraska 4.3 4.7 5.4 4.8 5.9 8.1 5.4 7.8 14.4 6.3 11.5 22.2 8.5 18.1 38.7 

Nevada 5.0 5.3 5.6 5.5 6.5 9.3 6.5 10.9 14.1 9.9 14.6 16.2 11.3 15.3 18.5 
New 
Hampshire 

6.3 6.5 6.8 6.6 7.3 8.6 7.1 8.7 11.9 7.8 11.4 19.6 8.9 14.0 29.0 

New Jersey 6.0 6.4 7.0 6.3 7.2 8.6 6.7 8.3 11.1 7.5 10.6 17.2 8.1 12.0 20.7 

New Mexico 3.5 4.0 4.7 3.9 4.9 6.5 4.4 6.3 9.0 5.2 8.1 11.0 6.1 9.5 12.2 
New York 6.9 7.4 8.3 7.2 8.3 10.0 7.7 9.4 12.0 8.6 11.7 18.2 9.2 12.9 20.8 
North Carolina 3.7 4.1 4.8 4.1 5.2 6.7 4.8 6.8 9.5 5.6 8.7 10.7 6.7 10.1 16.2 

North Dakota 4.8 5.2 5.7 5.2 6.2 7.9 5.9 8.1 12.1 6.6 10.5 15.8 8.1 14.1 27.7 
Ohio 4.8 5.1 5.6 5.2 6.0 7.6 5.6 7.4 11.4 6.4 10.4 22.9 7.6 13.8 36.6 
Oklahoma 4.5 4.8 5.1 4.9 5.5 6.6 5.2 6.7 9.3 5.8 8.9 13.4 6.7 10.7 18.4 

Oregon 4.4 4.9 5.5 4.9 5.8 7.4 5.4 7.2 10.1 6.2 9.5 22.5 7.1 11.3 27.8 
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 1L 1B 1H 2L 2B 2H 3L 3B 3H 4L 4B 4H 5L 5B 5H 
Pennsylvania 5.3 5.8 6.4 5.8 6.8 8.5 6.3 8.2 11.7 7.2 11.1 20.4 8.2 13.4 28.3 

Rhode Island 5.3 5.5 6.0 5.6 6.3 7.7 6.0 7.5 11.1 6.7 10.4 15.4 7.8 12.9 23.6 
South Carolina 4.0 4.3 4.7 4.4 5.2 6.5 4.9 6.5 9.8 5.5 8.4 10.9 6.8 11.3 25.4 

South Dakota 4.4 4.7 5.1 4.8 5.6 7.3 5.2 7.0 12.0 5.9 10.4 19.7 7.5 15.4 32.2 
Tennessee 4.9 5.2 5.6 5.4 6.4 8.1 6.1 8.4 13.1 7.1 11.5 19.7 8.7 16.3 38.4 
Texas 4.6 5.1 5.9 5.0 6.0 7.5 5.6 7.5 10.8 6.2 9.8 13.1 7.2 11.5 18.6 

Utah 5.3 5.7 6.4 5.7 6.8 8.5 6.3 8.2 11.6 7.4 11.4 17.6 8.2 13.1 25.1 
Vermont 5.5 5.8 6.2 5.9 6.6 8.2 6.3 8.3 13.3 6.9 11.7 30.6 8.5 16.2 39.0 
Virginia 5.0 5.4 6.0 5.5 6.5 7.8 6.2 7.7 9.5 7.0 9.1 9.9 7.7 9.8 11.1 

Washington 5.4 5.7 6.2 5.7 6.4 7.4 6.1 7.1 8.9 6.6 8.3 9.7 7.0 9.5 12.5 
West Virginia 3.6 3.9 4.3 4.1 4.9 6.3 4.6 6.4 9.4 5.3 8.5 14.5 6.4 10.7 20.1 

Wisconsin 5.1 5.3 5.7 5.4 6.2 7.8 5.8 7.6 12.7 6.5 11.1 27.5 8.0 16.2 44.9 
Wyoming 4.3 4.7 5.3 4.6 5.5 6.9 5.1 6.6 9.2 5.7 8.2 16.4 6.5 10.6 20.6 
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